Elekta Unity Overview and Technical Publications Bibliography

Elekta Unity MR-Linac is a result of expert collaborations, and its progress continues to be shaped by world-class minds and experience. This bibliography provides a comprehensive overview ranging from the foundational technical work that has shaped Elekta Unity, to dosimetry and online plan adaptation studies and novel studies on application of AI and deep learning that will further advance efficiency and accuracy in MRgRT.

Articles are categorized by area of interest and shown in descending order of publication date.

General description of MRgRT technology

ACPSEM position paper: the safety of magnetic resonance imaging linear accelerators.

Phys Eng Sci Med. 2023;46:19-43. Cook N; Shelton N; Gibson S; Barnes P; Alinaghi-Zadeh R; Jameson MG; . doi: 10.1007/s13246-023-01224-9.

Magnetic Resonance-Guided Adaptive Radiotherapy: Technical Concepts.

Image-Guided High-Precision Radiotherapy. 2023;:135–158. Hackett Sara; van Asselen Bram; Philippens Marielle; Woodings Simon; Wolthaus Jochem. doi: 10.1007/978-3-031-08601-4_6.

ESTRO Breur lecture 2022: Real-time MRI-guided radiotherapy: The next generation standard?

Radiother Oncol. 2022;176:244-248. Lagendijk JJW; Raaymakers BW; Intven MPW; van der Voort van Zyp JRN. doi: 10.1016/j.radonc.2022.08.021.

ICRU REPORT 97: MRI-Guided Radiation Therapy Using MRI-Linear Accelerators.

J?ICRU. 2022;22:1-100. Keall Paul J.; Glide-Hurst Carri K.; Cao Minsong; Lee Percy; Murray Brad; Raaymakers Bas W.; Tree Alison; van der Heide Uulke A.. doi: 10.1177/14736691221141950.

Implementation of Magnetic Resonance Imaging-Guided Radiation Therapy in Routine Care: Opportunities and Challenges in the United States.

Adv Radiat Oncol. 2022;7:100953. Hehakaya C; Sharma AM; van der Voort Van Zijp JRN; Grobbee DE; Verkooijen HM; Izaguirre EW; Moors EHM. doi: 10.1016/j.adro.2022.100953.

The future of MRI in radiation therapy: challenges and opportunities for the MR community.

Magn Reson Med. 2022;88:2592-2608. Goodburn RJ; Philippens MEP; Lefebvre TL; Khalifa A; Bruijnen T; Freedman JN; Waddington DEJ; Younus E; Aliotta E; Meliadò G; Stanescu T; Bano W; Fatemi-Ardekani A; Wetscherek A; Oelfke U; van den Berg N; Mason RP; van Houdt PJ; Balter JM; Gurney-Champion OJ. doi: 10.1002/mrm.29450.

Technical Radiotherapy Advances - The Role of Magnetic Resonance Imaging-Guided Radiation in the Delivery of Hypofractionation.

Clin Oncol (R Coll Radiol). 2022;34:301-312. Gough J; Hall W; Good J; Nash A; Aitken K. doi: 10.1016/j.clon.2022.02.020.

Magnetic resonance linear accelerator technology and adaptive radiation therapy: An overview for clinicians.

CA Cancer J Clin. 2022;72:34-56. Hall WA; Paulson E; Li XA; Erickson B; Schultz C; Tree A; Awan M; Low DA; McDonald BA; Salzillo T; Glide-Hurst CK; Kishan AU; Fuller CD. doi: 10.3322/caac.21707.

Future mainstream platform for online adaptive radiotherapy will be using on-board MR rather than on-board (CB) CT images.

J Appl Clin Med Phys. 2021;22:4-9. Hyer DE; Cai B; Rong Y. doi: 10.1002/acm2.13352.

MRI-Guided Radiation Therapy.

Adv Oncol. 2021;1:29-39. Lee Sangjune Laurence; Hall William A.; Morris Zachary S.; Christensen Leslie; Bassetti Michael. doi: 10.1016/j.yao.2021.02.003.

MRI-guided Radiation Therapy: An Emerging Paradigm in Adaptive Radiation Oncology.

Radiology. 2021;298:248-260. Otazo R; Lambin P; Pignol JP; Ladd ME; Schlemmer HP; Baumann M; Hricak H. doi: 10.1148/radiol.2020202747.

Sensible Introduction of MR-Guided Radiotherapy: A Warm Plea for the RCT.

Front Oncol. 2021;11:652889. Verkooijen HM; Henke LE. doi: 10.3389/fonc.2021.652889.

Technical Challenges of Real-Time Adaptive MR-Guided Radiotherapy.

Front Oncol. 2021;11:634507. Thorwarth D; Low DA. doi: 10.3389/fonc.2021.634507.

Magnetic resonance-guided radiation therapy: A review.

J Med Imaging Radiat Oncol. 2020;64:163-177. Chin S; Eccles CL; McWilliam A; Chuter R; Walker E; Whitehurst P; Berresford J; Van Herk M; Hoskin PJ; Choudhury A. doi: 10.1111/1754-9485.12968.

MR-Guided Radiotherapy: The Perfect Partner for Immunotherapy?

Front Oncol. 2020;10:615697. Horner-Rieber J; Kluter S; Debus J; Adema G; Ansems M; Verheij M. doi: 10.3389/fonc.2020.615697.

Single-fraction magnetic resonance guided stereotactic radiotherapy - A game changer?

Phys Imaging Radiat Oncol. 2020;14:95-96. Kron T; Thorwarth D. doi: 10.1016/j.phro.2020.06.003.

MR-guidance in clinical reality: current treatment challenges and future perspectives.

Radiat Oncol. 2019;14:92. Corradini S; Alongi F; Andratschke N; Belka C; Boldrini L; Cellini F; Debus J; Guckenberger M; Horner-Rieber J; Lagerwaard FJ; Mazzola R; Palacios MA; Philippens MEP; Raaijmakers CPJ; Terhaard CHJ; Valentini V; Niyazi M. doi: 10.1186/s13014-019-1308-y.

The transformation of radiation oncology using real-time magnetic resonance guidance: A review.

Eur J Cancer. 2019;122:42-52. Hall WA; Paulson ES; van der Heide UA; Fuller CD; Raaymakers BW; Lagendijk JJW; Li XA; Jaffray DA; Dawson LA; Erickson B; Verheij M; Harrington KJ; Sahgal A; Lee P; Parikh PJ; Bassetti MF; Robinson CG; Minsky BD; Choudhury A; Tersteeg RJHA; Schultz CJ. doi: 10.1016/j.ejca.2019.07.021.

Adaptive Radiotherapy Enabled by MRI Guidance.

Clin Oncol (R Coll Radiol). 2018;30:711-719. Hunt A; Hansen VN; Oelfke U; Nill S; Hafeez S. doi: 10.1016/j.clon.2018.08.001.

Magnetic Resonance Imaging-Guided Radiation Therapy: A Short Strengths, Weaknesses, Opportunities, and Threats Analysis.

Int J Radiat Oncol Biol Phys. 2018;101:1057-1060. van Herk M; McWilliam A; Dubec M; Faivre-Finn C; Choudhury A. doi: 10.1016/j.ijrobp.2017.11.009.

Magnetic Resonance-guided Radiotherapy - Can We Justify More Expensive Technology?

Clin Oncol (R Coll Radiol). 2018;30:677-679. Tree AC; Huddart R; Choudhury A. doi: 10.1016/j.clon.2018.08.013.

The need for, and implementation of, image guidance in radiation therapy.

Ann ICRP. 2018;47:160-176. Ibbott GS. doi: 10.1177/0146645318764092.

Online Adaptive Radiation Therapy.

Int J Radiat Oncol Biol Phys. 2017;99:994-1003. Lim-Reinders S; Keller BM; Al-Ward S; Sahgal A; Kim A. doi: 10.1016/j.ijrobp.2017.04.023.

The Future of Image-guided Radiotherapy.

Clin Oncol (R Coll Radiol). 2017;29:662-666. Choudhury A; Budgell G; MacKay R; Falk S; Faivre-Finn C; Dubec M; van Herk M; McWilliam A. doi: 10.1016/j.clon.2017.04.036.

MR-guided radiation therapy.

Physica Medica. 2016;32:175. van der Heide Uulke A.. doi: 10.1016/j.ejmp.2016.07.284.

Magnetic Resonance Imaging-guided Radiation Therapy: Technological Innovation Provides a New Vision of Radiation Oncology Practice.

Clin Oncol (R Coll Radiol). 2015;27:495-7. Oelfke U. doi: 10.1016/j.clon.2015.04.004.

Introduction: Systems for magnetic resonance image guided radiation therapy.

Semin Radiat Oncol. 2014;24:192. Menard C; van der Heide U. doi: 10.1016/j.semradonc.2014.02.010.

MR guidance in radiotherapy.

Phys Med Biol. 2014;59:R349-69. Lagendijk JJ; Raaymakers BW; Van den Berg CA; Moerland MA; Philippens ME; van Vulpen M. doi: 10.1088/0031-9155/59/21/R349.

The magnetic resonance imaging-linac system.

Semin Radiat Oncol. 2014;24:207-9. Lagendijk JJ; Raaymakers BW; van Vulpen M. doi: 10.1016/j.semradonc.2014.02.009.

Integrating a 1.5 T MRI scanner with a 6 MV accelerator: proof of concept.

Phys Med Biol. 2009;54:N229-37. Raaymakers BW; Lagendijk JJ; Overweg J; Kok JG; Raaijmakers AJ; Kerkhof EM; van der Put RW; Meijsing I; Crijns SP; Benedosso F; van Vulpen M; de Graaff CH; Allen J; Brown KJ. doi: 10.1088/0031-9155/54/12/N01.

Online adaptation and planning

Integration of operator-validated contours in deformable image registration for dose accumulation in radiotherapy.

Phys Imaging Radiat Oncol. 2023;27:100483. Bosma L; Ries M; Denis de Senneville B; Raaymakers B; Zachiu C. doi: 10.1016/j.phro.2023.100483.

Investigation of autosegmentation techniques on T2-weighted MRI for off-line dose reconstruction in MR-linac workflow for head and neck cancers.

Med Phys. 2023. McDonald BA; Cardenas CE; O'Connell N; Ahmed S; Naser MA; Wahid KA; Xu J; Thill D; Zuhour RJ; Mesko S; Augustyn A; Buszek SM; Grant S; Chapman BV; Bagley AF; He R; Mohamed ASR; Christodouleas J; Brock KK; Fuller CD. doi: 10.1002/mp.16582.

Comparing adaptation strategies in MRI-guided online adaptive radiotherapy for prostate cancer: implications for treatment margins.

Radiother Oncol. 2023;186:109761. Dassen MG; Janssen T; Kusters M; Pos F; Kerkmeijer LGW; van der Heide UA; van der Bijl E. doi: 10.1016/j.radonc.2023.109761.

Intra-fraction motion of pelvic oligometastases and feasibility of PTV margin reduction using MRI guided adaptive radiotherapy.

Front Oncol. 2023;13:1098593. Snyder J; Smith B; St-Aubin J; Dunkerley D; Shepard A; Caster J; Hyer D. doi: 10.3389/fonc.2023.1098593.

Effect of 0.35 T and 1.5 T magnetic fields on superficial dose in MR-guided radiotherapy of laryngeal cancer.

Clin Transl Radiat Oncol. 2023;40:100624. Conrad M; Dal Bello R; van Timmeren JE; Andratschke N; Wilke L; Guckenberger M; Tanadini-Lang S; Balermpas P. doi: 10.1016/j.ctro.2023.100624.

Auto-detection of necessity for MRI-guided online adaptive replanning using a machine learning classifier.

Med Phys. 2023;50:440-448. Parchur AK; Lim S; Nasief HG; Omari EA; Zhang Y; Paulson ES; Hall WA; Erickson B; Li XA. doi: 10.1002/mp.16047.

Dosimetric feasibility of direct post-operative MR-Linac-based stereotactic radiosurgery for resection cavities of brain metastases.

Radiother Oncol. 2023;179:109456. Seravalli E; Sierts M; Brand E; Maspero M; David S; Philippens MEP; Voormolen EHJ; Verhoeff JJC. doi: 10.1016/j.radonc.2022.109456.

Impact of endorectal filling on interobserver variability of MRI based rectal primary tumor delineation.

Clin Transl Radiat Oncol. 2023;38:1-5. Lo Russo M; Nachbar M; Barry A; Bhide S; Chang A; Hall W; Intven M; Marijnen C; Peters F; Minsky B; Romesser PB; Sarkar R; Tan A; Boeke S; Wegener D; Butzer S; Boldt J; Gatidis S; Nikolaou K; Thorwarth D; Zips D; Gani C. doi: 10.1016/j.ctro.2022.09.002.

Feasibility of using a dual isocentre technique for treating cervical cancer on the 1.5 T MR-Linac.

Phys Med Biol. 2023;68:25017. Chuter RW; Brewster F; Retout L; Cree A; Aktürk N; Hales R; Benson R; Hoskin P; McWilliam A. doi: 10.1088/1361-6560/acae18.

Interobserver variation of clinical oncologists compared to therapeutic radiographers (RTT) prostate contours on T2 weighted MRI.

Tech Innov Patient Support Radiat Oncol. 2023;25:100200. Adair Smith G; Dunlop A; Alexander SE; Barnes H; Casey F; Chick J; Gunapala R; Herbert T; Lawes R; Mason SA; Mitchell A; Mohajer J; Murray J; Nill S; Patel P; Pathmanathan A; Sritharan K; Sundahl N; Westley R; Tree AC; McNair HA. doi: 10.1016/j.tipsro.2022.12.007.

Empirical planning target volume modeling for high precision MRI guided intracranial radiotherapy.

Clin Transl Radiat Oncol. 2023;39:100582-100582. Stewart J; Sahgal A; Zadeh MM; Moazen B; Jabehdar Maralani P; Breen S; Lau A; Binda S; Keller B; Husain Z; Myrehaug S; Detsky J; Soliman H; Tseng CL; Ruschin M. doi: 10.1016/j.ctro.2023.100582.

Online Adaptive MRI-Guided Radiotherapy for Primary Tumor and Lymph Node Boosting in Rectal Cancer.

Cancers (Basel). 2023;15:1009. Kensen CM; Betgen A; Wiersema L; Peters FP; Kayembe MT; Marijnen CAM; van der Heide UA; Janssen TM. doi: 10.3390/cancers15041009.

Biologically Equivalent Dose Comparison Between Magnetic Resonance-Guided Adaptive and Computed Tomography-Guided Internal Target Volume-Based Stereotactic Body Radiotherapy for Liver Tumors.

Cureus. 2023;15:e33478. Yoda K; Sato A; Miyake Y; Arato T; Starbuck W. doi: 10.7759/cureus.33478.

On the feasibility of cardiac substructure sparing in magnetic resonance imaging guided stereotactic lung radiotherapy.

Med Phys. 2023;50:397-409. van der Pol LHG; Hackett SL; Hoesein FAAM; Snoeren LMW; Pomp J; Raaymakers BW; Verhoeff JJC; Fast MF. doi: 10.1002/mp.16028.

Understanding the Benefit of Magnetic Resonance-guided Adaptive Radiotherapy in Rectal Cancer Patients: a Single-centre Study.

Clin Oncol (R Coll Radiol). 2023;35:e135-e142. Ingle M; White I; Chick J; Stankiewicz H; Mitchell A; Barnes H; Herbert T; Nill S; Oelfke U; Huddart R; Ng-Cheng-Hin B; Hafeez S; Lalondrelle S; Dunlop A; Bhide S. doi: 10.1016/j.clon.2022.10.008.

Evaluation of therapeutic radiographer contouring for magnetic resonance image guided online adaptive prostate radiotherapy.

Radiother Oncol. 2023;180:109457. Adair Smith G; Dunlop A; Alexander SE; Barnes H; Casey F; Chick J; Gunapala R; Herbert T; Lawes R; Mason SA; Mitchell A; Mohajer J; Murray J; Nill S; Patel P; Pathmanathan A; Sritharan K; Sundahl N; Tree AC; Westley R; Williams B; McNair HA. doi: 10.1016/j.radonc.2022.109457.

Prediction of adaptive strategies based on deformation vector field features for MR-guided adaptive radiotherapy of prostate cancer.

Med Phys. 2022;50:3573-3583. Xia WL; Liang B; Men K; Zhang K; Tian Y; Li MH; Lu NN; Li YX; Dai JR. doi: 10.1002/mp.16192.

Benchmarking daily adaptation using fully automated radiotherapy treatment plan optimization for rectal cancer.

Phys Imaging Radiat Oncol. 2022;24:7-13. Jagt TZ; Janssen TM; Betgen A; Wiersema L; Verhage R; Garritsen S; Vijlbrief-Bosman T; de Ruiter P; Remeijer P; Marijnen CAM; Peters FP; Sonke JJ. doi: 10.1016/j.phro.2022.08.006.

Dosimetric comparison of MR-guided adaptive IMRT versus 3DOF-VMAT for prostate stereotactic radiotherapy.

Tech Innov Patient Support Radiat Oncol. 2022;21:64-70. Kong VC; Dang J; Li W; Navarro I; Padayachee J; Malkov V; Winter J; Raman S; Berlin A; Catton C; Warde P; Chung P. doi: 10.1016/j.tipsro.2022.02.003.

Effect of intrafraction adaptation on PTV margins for MRI guided online adaptive radiotherapy for rectal cancer.

Radiat Oncol. 2022;17:110. Kensen CM; Janssen TM; Betgen A; Wiersema L; Peters FP; Remeijer P; Marijnen CAM; van der Heide UA. doi: 10.1186/s13014-022-02079-2.

Domain adaptation of automated treatment planning from computed tomography to magnetic resonance.

Phys Med Biol. 2022;67:125010. Khalifa A; Winter J; Navarro I; McIntosh C; Purdie TG. doi: 10.1088/1361-6560/ac72ec.

Dosimetric Evaluation of Dose Calculation Uncertainties for MR_Only Approaches in Prostate MR_Guided Radiotherapy.

Front. Phys.. 2022;10:897710. Coric Ivan; Shreshtha Kumar; Roque Thais; Paragios Nikos; Gani Cihan; Zips Daniel; Thorwarth Daniela; Nachbar Marcel. doi: 10.3389/fphy.2022.897710.

Inter- and intrafraction motion assessment and accumulated dose quantification of upper gastrointestinal organs during magnetic resonance-guided ablative radiation therapy of pancreas patients.

Phys Imaging Radiat Oncol. 2022;21:54-61. Alam S; Veeraraghavan H; Tringale K; Amoateng E; Subashi E; Wu AJ; Crane CH; Tyagi N. doi: 10.1016/j.phro.2022.02.007.

Adaptive margins for online adaptive radiotherapy.

Phys Med Biol. 2022;67:195016. van der Bijl E; Remeijer P; Sonke JJ; van der Heide UA; Janssen TM. doi: 10.1088/1361-6560/ac9175.

Online adaptive radiotherapy for head and neck cancers on the MR linear Accelerator: Introducing a novel modified Adapt-to-Shape approach.

Clin Transl Radiat Oncol. 2022;32:48-51. Gupta A; Dunlop A; Mitchell A; McQuaid D; Nill S; Barnes H; Newbold K; Nutting C; Bhide S; Oelfke U; Harrington KJ; Wong KH. doi: 10.1016/j.ctro.2021.11.001.

Fast and accurate deformable contour propagation for intra-fraction adaptive magnetic resonance-guided prostate radiotherapy.

Phys Imaging Radiat Oncol. 2022;21:62-65. Willigenburg T; Zachiu C; Lagendijk JJW; van der Voort van Zyp JRN; de Boer HCJ; Raaymakers BW. doi: 10.1016/j.phro.2022.02.008.

Daily online contouring and re-planning versus translation-only correction in neurovascular-sparing magnetic resonance-guided radiotherapy for localized prostate cancer.

Phys Imaging Radiat Oncol. 2022;24:43-46. Teunissen FR; van der Voort van Zyp JRN; de Groot-van Breugel EN; Verkooijen HM; Wortel RC; de Boer JCJ. doi: 10.1016/j.phro.2022.09.002.

The effect of respiration-induced target motion on 3D magnetic resonance images used to guide radiotherapy.

Phys Imaging Radiat Oncol. 2022;24:167-172. Bertelsen A; Bernchou U; Schytte T; Brink C; Mahmood F. doi: 10.1016/j.phro.2022.11.010.

Towards mid-position based Stereotactic Body Radiation Therapy using online magnetic resonance imaging guidance for central lung tumours.

Phys Imaging Radiat Oncol. 2022;23:24-31. Ligtenberg H; Hackett SL; Merckel LG; Snoeren L; Kontaxis C; Zachiu C; Bol GH; Verhoeff JJC; Fast MF. doi: 10.1016/j.phro.2022.05.002.

Dosimetric analysis of MR-LINAC treatment plans for salvage spine SBRT re-irradiation.

J Appl Clin Med Phys. 2022;23:e13752. Han EY; Yeboa DN; Briere TM; Yang J; Wang H. doi: 10.1002/acm2.13752.

Dosimetric Accuracy of MR-Guided Online Adaptive Planning for Nasopharyngeal Carcinoma Radiotherapy on 1.5 T MR-Linac.

Front Oncol. 2022;12:858076. Ding S; Liu H; Li Y; Wang B; Li R; Huang X. doi: 10.3389/fonc.2022.858076.

Clinical evaluation of autonomous, unsupervised planning integrated in MR-guided radiotherapy for prostate cancer.

Radiother Oncol. 2022;168:229-233. Kunzel LA; Nachbar M; Hagmuller M; Gani C; Boeke S; Wegener D; Paulsen F; Zips D; Thorwarth D. doi: 10.1016/j.radonc.2022.01.036.

Inter-fraction dynamics during post-operative 5 fraction cavity hypofractionated stereotactic radiotherapy with a MR LINAC: a prospective serial imaging study.

J Neurooncol. 2022;156:569-577. Tan H; Stewart J; Ruschin M; Wang MH; Myrehaug S; Tseng CL; Detsky J; Husain Z; Chen H; Sahgal A; Soliman H. doi: 10.1007/s11060-021-03938-w.

Development and implementation of an automatic air delineation technique for MRI-guided adaptive radiation therapy.

Phys Med Biol. 2022;67:145011. Ahunbay E; Parchur AK; Paulson E; Chen X; Omari E; Li XA. doi: 10.1088/1361-6560/ac7b65.

Clinical application of a sub-fractionation workflow for intrafraction re-planning during prostate radiotherapy treatment on a 1.5 Tesla MR-Linac: A practical method to mitigate intrafraction motion.

Radiother Oncol. 2022;176:25-30. Willigenburg T; Zachiu C; Bol GH; de Groot-van Beugel EN; Lagendijk JJW; van der Voort van Zyp JRN; Raaymakers BW; de Boer JCJ. doi: 10.1016/j.radonc.2022.09.004.

MRI-guided adaptive radiotherapy for prostate cancer: When do we need to account for intra-fraction motion?

Clin Transl Radiat Oncol. 2022;37:85-88. Lawes R; Barnes H; Herbert T; Mitchell A; Nill S; Oelfke U; Pathmanathan A; Smith GA; Sritharan K; Tree A; McNair HA; Dunlop A. doi: 10.1016/j.ctro.2022.09.001.

Dosimetric impact of intrafraction motion under abdominal compression during MR-guided SBRT for (Peri-) pancreatic tumors.

Phys Med Biol. 2022;67:185016. Grimbergen G; Eijkelenkamp H; Heerkens HD; Raaymakers BW; Intven MPW; Meijer GJ. doi: 10.1088/1361-6560/ac8ddd.

Assessment of planning target volume margins in 1.5 T magnetic resonance‐guided stereotactic body radiation therapy for localized prostate cancer.

Prec Radiat Oncol.. 2022;6:127-135. Yang Bin; Yuan Jing; Poon Darren; Geng Hui; Lam Wai; Cheung Kin; Yu Siu. doi: 10.1002/pro6.1155.

Impact of intrafraction changes in delivered dose of the day for prostate cancer patients treated with stereotactic body radiotherapy via MR-Linac.

Tech Innov Patient Support Radiat Oncol. 2022;23:41-46. Dang Jennifer; Li Winnie; Navarro Inmaculada; Winter Jeff; Malkov Victor; Berlin Alejandro; Catton Charles; Padayachee Jerusha; Raman Srinivas; Warde Padraig; Chung Peter. doi: 10.1016/j.tipsro.2022.08.005.

Interrater agreement of contouring of the neurovascular bundles and internal pudendal arteries in neurovascular-sparing magnetic resonance-guided radiotherapy for localized prostate cancer.

Clin Transl Radiat Oncol. 2022;32:29-34. Teunissen F.R.; Wortel R.C.; Wessels F.J.; Claes A.; van de Pol S.M.G.; Rasing M.J.A.; Meijer R.P.; van Melick H.H.E.; de Boer J.C.J.; Verkooijen H.M.; van der Voort van Zyp J.R.N.. doi: 10.1016/j.ctro.2021.11.005.

Dose accumulation for MR-guided adaptive radiotherapy: From practical considerations to state-of-the-art clinical implementation.

Front Oncol. 2022;12:1086258. McDonald BA; Zachiu C; Christodouleas J; Naser MA; Ruschin M; Sonke JJ; Thorwarth D; Létourneau D; Tyagi N; Tadic T; Yang J; Li XA; Bernchou U; Hyer DE; Snyder JE; Bubula-Rehm E; Fuller CD; Brock KK. doi: 10.3389/fonc.2022.1086258.

Online adaptive MR-guided radiotherapy: Conformity of contour adaptation for prostate cancer, rectal cancer and lymph node oligometastases among radiation therapists and radiation oncologists.

Tech Innov Patient Support Radiat Oncol. 2022;23:33-40. Rasing MJA; Sikkes GG; Vissers NGPM; Kotte ANTJ; Boudewijn JH; Doornaert PAH; Eppinga WSC; Intven M; Rutgers RHA; Scheeren A; Snoeren LMW; Vlig TB; van der Voort van Zyp JRN; Wijkhuizen LM; van Rossum PSN; Peters M; Jürgenliemk-Schulz IM. doi: 10.1016/j.tipsro.2022.08.004.

Dosimetric comparison of automatically propagated prostate contours with manually drawn contours in MRI-guided radiotherapy: A step towards a contouring free workflow?

Clin Transl Radiat Oncol. 2022;37:25-32. Sritharan K; Dunlop A; Mohajer J; Adair-Smith G; Barnes H; Brand D; Greenlay E; Hijab A; Oelfke U; Pathmanathan A; Mitchell A; Murray J; Nill S; Parker C; Sundahl N; Tree AC. doi: 10.1016/j.ctro.2022.08.004.

Automated Planning for Prostate Stereotactic Body Radiation Therapy on the 1.5 T MR-Linac.

Adv Radiat Oncol. 2022;7:100865. Naccarato S; Rigo M; Pellegrini R; Voet P; Akhiat H; Gurrera D; De Simone A; Sicignano G; Mazzola R; Figlia V; Ricchetti F; Nicosia L; Giaj-Levra N; Cuccia F; Stavreva N; Pressyanov DS; Stavrev P; Alongi F; Ruggieri R. doi: 10.1016/j.adro.2021.100865.

Dose accumulation of daily adaptive plans to decide optimal plan adaptation strategy for head-and-neck patients treated with MR-Linac.

Med Dosim. 2022;47:103-109. Lim SY; Tran A; Tran ANK; Sobremonte A; Fuller CD; Simmons L; Yang J. doi: 10.1016/j.meddos.2021.08.005.

Reducing MRI-guided radiotherapy planning and delivery times via efficient leaf sequencing and segment shape optimization algorithms.

Phys Med Biol. 2022;67: 055005. Snyder JE; St-Aubin J; Yaddanapudi S; Marshall S; Strand S; Kruger S; Flynn R; Hyer DE. doi: 10.1088/1361-6560/ac5299.

Impact of magnetic resonance-guided versus conventional radiotherapy workflows on organ at risk doses in stereotactic body radiotherapy for lymph node oligometastases.

Phys Imaging Radiat Oncol. 2022;23:66-73. Werensteijn-Honingh AM; Kroon PS; Winkel D; van Gaal JC; Hes J; Snoeren LMW; Timmer JK; Mout CCP; Bol GH; Kotte AN; Eppinga WSC; Intven M; Raaymakers BW; Jürgenliemk-Schulz IM. doi: 10.1016/j.phro.2022.06.011.

Bladder filling in patients undergoing prostate radiotherapy on a MR-linac: The dosimetric impact.

Tech Innov Patient Support Radiat Oncol. 2022;21:41-45. Smith GA; Dunlop A; Barnes H; Herbert T; Lawes R; Mohajer J; Tree AC; McNair HA. doi: 10.1016/j.tipsro.2022.02.002.

Adaptive magnetic resonance-guided neurovascular-sparing radiotherapy for preservation of erectile function in prostate cancer patients.

Phys Imaging Radiat Oncol. 2021;20:5-10. Teunissen FR; Wortel RC; Hes J; Willigenburg T; de Groot-van Breugel EN; de Boer JCJ; van Melick HHE; Verkooijen HM; van der Voort van Zyp JRN. doi: 10.1016/j.phro.2021.09.002.

Planning target volume margin assessment for online adaptive MR-guided dose-escalation in rectal cancer on a 1.5 T MR-Linac.

Radiother Oncol. 2021;162:150-155. Eijkelenkamp H; Boekhoff MR; Verweij ME; Peters FP; Meijer GJ; Intven MPW. doi: 10.1016/j.radonc.2021.07.011.

Accuracy of automatic structure propagation for daily magnetic resonance image-guided head and neck radiotherapy.

Acta Oncol. 2021;60:589-597. Christiansen RL; Johansen J; Zukauskaite R; Hansen CR; Bertelsen AS; Hansen O; Mahmood F; Brink C; Bernchou U. doi: 10.1080/0284186X.2021.1891282.

Prone vs. supine accelerated partial breast irradiation on an MR-Linac: A planning study.

Radiother Oncol. 2021;165:193-199. Groot Koerkamp ML; van der Leij F; van 't Westeinde T; Bol GH; Scholten V; Bouwmans R; Mandija S; Philippens MEP; van den Bongard HJGD; Houweling AC. doi: 10.1016/j.radonc.2021.11.001.

Assessment of dose accuracy for online MR-guided radiotherapy for cervical carcinoma.

Journal of Radiation Research and Applied Sciences. 2021;14:159-170. Ding Shouliang; Liu Hongdong; Li Yongbao; Wang Bin; Li Rui; Liu Biaoshui; Ouyang Yi; Wu Dehua; Huang Xiaoyan. doi: 10.1080/16878507.2021.1888243.

Comparison of Intensity Modulated Radiotherapy Treatment Plans Between 1.5T MR-Linac and Conventional Linac.

Technol Cancer Res Treat. 2021;20:1533033820985871. Ding S; Li Y; Liu H; Li R; Wang B; Zhang J; Chen Y; Huang X. doi: 10.1177/1533033820985871.

Evaluation of daily online contour adaptation by radiation therapists for prostate cancer treatment on an MRI-guided linear accelerator.

Clin Transl Radiat Oncol. 2021;27:50-56. Willigenburg T; de Muinck Keizer DM; Peters M; Claes A; Lagendijk JJW; de Boer HCJ; van der Voort van Zyp JRN. doi: 10.1016/j.ctro.2021.01.002.

An in-silico assessment of the dosimetric benefits of MR-guided radiotherapy for esophageal cancer patients.

Radiother Oncol. 2021;162:76-84. Boekhoff M; Defize I; Borggreve A; van Hillegersberg R; Kotte A; Lagendijk J; van Lier A; Ruurda J; Takahashi N; Mook S; Meijer G. doi: 10.1016/j.radonc.2021.06.038.

Comparison of Library of Plans with two daily adaptive strategies for whole bladder radiotherapy.

Phys Imaging Radiat Oncol. 2021;20:82-87. den Boer D; den Hartogh MD; Kotte ANTJ; van der Voort van Zyp JRN; Noteboom JL; Bol GH; Willigenburg T; Werensteijn-Honingh AM; Jurgenliemk-Schulz IM; van Lier ALHMW; Kroon PS. doi: 10.1016/j.phro.2021.11.002.

On-line daily plan optimization combined with a virtual couch shift procedure to address intrafraction motion in prostate magnetic resonance guided radiotherapy.

Phys Imaging Radiat Oncol. 2021;19:90-95. de Muinck Keizer DM; van der Voort van Zyp JRN; de Groot-van Breugel EN; Raaymakers BW; Lagendijk JJW; de Boer HCJ. doi: 10.1016/j.phro.2021.07.010.

Daily dosimetric variation between image-guided volumetric modulated arc radiotherapy and MR-guided daily adaptive radiotherapy for prostate cancer stereotactic body radiotherapy.

Acta Oncol. 2021;60:215-221. Nicosia L; Sicignano G; Rigo M; Figlia V; Cuccia F; De Simone A; Giaj-Levra N; Mazzola R; Naccarato S; Ricchetti F; Vitale C; Ruggieri R; Alongi F. doi: 10.1080/0284186X.2020.1821090.

Mitigation on bowel loops daily variations by 1.5-T MR-guided daily-adaptive SBRT for abdomino-pelvic lymph-nodal oligometastases.

J Cancer Res Clin Oncol. 2021;147:3269-3277. Cuccia F; Rigo M; Gurrera D; Nicosia L; Mazzola R; Figlia V; Giaj-Levra N; Ricchetti F; Attina G; Pastorello E; De Simone A; Naccarato S; Sicignano G; Ruggieri R; Alongi F. doi: 10.1007/s00432-021-03739-8.

Proof-of-concept delivery of intensity modulated arc therapy on the Elekta Unity 1.5 T MR-linac.

Phys Med Biol. 2021;66:04LT01. Kontaxis C; Woodhead PL; Bol GH; Lagendijk JJW; Raaymakers BW. doi: 10.1088/1361-6560/abd66d.

Simulated daily plan adaptation for magnetic resonance-guided liver stereotactic body radiotherapy.

Acta Oncol. 2021;60:260-266. Taylor E; Lukovic J; Velec M; Shessel A; Stanescu T; Dawson L; Letourneau D; Lindsay P. doi: 10.1080/0284186X.2020.1840625.

Interobserver variability in target volume delineation for CT/MRI simulation and MRI guided adaptive radiotherapy in rectal cancer.

Br J Radiol. 2021;94:20210350. White I; Hunt A; Bird T; Settatree S; Soliman H; Mcquaid D; Dearnaley D; Lalondrelle S; Bhide S. doi: 10.1259/bjr.20210350.

Online adaptive radiotherapy potentially reduces toxicity for high-risk prostate cancer treatment.

Radiother Oncol. 2021;167:165-171. Lubeck Christiansen R; Dysager L; Ronn Hansen C; Robenhagen Jensen H; Schytte T; Junker Nyborg C; Smedegaard Bertelsen A; Nielsen Agergaard S; Mahmood F; Hansen S; Hansen O; Brink C; Bernchou U. doi: 10.1016/j.radonc.2021.12.013.

A Fast Online Replanning Algorithm Based on Intensity Field Projection for Adaptive Radiotherapy.

Front Oncol. 2020;10:287. Liu X; Liang Y; Zhu J; Yu G; Yu Y; Cao Q; Li XA; Li B. doi: 10.3389/fonc.2020.00287.

Anatomically-adaptive multi-modal image registration for image-guided external-beam radiotherapy.

Phys Med Biol. 2020;65:215028. Zachiu C; Denis de Senneville B; Willigenburg T; Voort van Zyp JRN; de Boer JCJ; Raaymakers BW; Ries M. doi: 10.1088/1361-6560/abad7d.

A Patient-Specific Autosegmentation Strategy Using Multi-Input Deformable Image Registration for Magnetic Resonance Imaging-Guided Online Adaptive Radiation Therapy: A Feasibility Study.

Adv Radiat Oncol. 2020;5:1350-1358. Zhang Y; Paulson E; Lim S; Hall WA; Ahunbay E; Mickevicius NJ; Straza MW; Erickson B; Li XA. doi: 10.1016/j.adro.2020.04.027.

First system for fully-automated multi-criterial treatment planning for a high-magnetic field MR-Linac applied to rectal cancer.

Acta Oncol. 2020;59:926-932. Bijman R; Rossi L; Janssen T; de Ruiter P; Carbaat C; van Triest B; Breedveld S; Sonke JJ; Heijmen B. doi: 10.1080/0284186X.2020.1766697.

Feasibility of spinal stereotactic body radiotherapy in Elekta Unity((R)) MR-Linac.

J Radiosurg SBRT. 2020;7:127-134. Han EY; Aima M; Hughes N; Briere TM; Yeboa DN; Castillo P; Wang J; Yang J; Vedam S. doi: rsbrt-7-134.pdf (nih.gov).

Accuracy of automatic deformable structure propagation for high-field MRI guided prostate radiotherapy.

Radiat Oncol. 2020;15:32. Christiansen RL; Dysager L; Bertelsen AS; Hansen O; Brink C; Bernchou U. doi: 10.1186/s13014-020-1482-y.

Delivered dose quantification in prostate radiotherapy using online 3D cine imaging and treatment log files on a combined 1.5T magnetic resonance imaging and linear accelerator system.

Phys Imaging Radiat Oncol. 2020;15:23-29. Kontaxis C; de Muinck Keizer DM; Kerkmeijer LGW; Willigenburg T; den Hartogh MD; van der Voort van Zyp JRN; de Groot-van Breugel EN; Hes J; Raaymakers BW; Lagendijk JJW; de Boer HCJ. doi: 10.1016/j.phro.2020.06.005.

Adaptive SBRT by 1.5 T MR-linac for prostate cancer: On the accuracy of dose delivery in view of the prolonged session time.

Phys Med. 2020;80:34-41. Ruggieri R; Rigo M; Naccarato S; Gurrera D; Figlia V; Mazzola R; Ricchetti F; Nicosia L; Giaj-Levra N; Cuccia F; Vitale C; Stavreva N; Pressyanov DS; Stavrev P; Pellegrini R; Alongi F. doi: 10.1016/j.ejmp.2020.09.026.

Focal salvage treatment for radiorecurrent prostate cancer: A magnetic resonance-guided stereotactic body radiotherapy versus high-dose-rate brachytherapy planning study.

Phys Imaging Radiat Oncol. 2020;15:60-65. Willigenburg T; Beld E; Hes J; Lagendijk JJW; de Boer HCJ; Moerland MA; van der Voort van Zyp JRN. doi: 10.1016/j.phro.2020.07.006.

A preferred patient decubitus positioning for magnetic resonance image guided online adaptive radiation therapy of pancreatic cancer.

Phys Imaging Radiat Oncol. 2019;12:22-29. Chen Y; Chen X; Hall W; Prior P; Zhang Y; Paulson E; Lang J; Erickson B; Li XA. doi: 10.1016/j.phro.2019.11.001.

A Technique to Rapidly Generate Synthetic Computed Tomography for Magnetic Resonance Imaging-Guided Online Adaptive Replanning: An Exploratory Study.

Int J Radiat Oncol Biol Phys. 2019;103:1261-1270. Ahunbay EE; Thapa R; Chen X; Paulson E; Li XA. doi: 10.1016/j.ijrobp.2018.12.008.

Investigating the impact of patient arm position in an MR-linac on liver SBRT treatment plans.

Med Phys. 2019;46:5144-5151. van den Wollenberg W; de Ruiter P; Nowee ME; Jansen EPM; Sonke JJ; Fast MF. doi: 10.1002/mp.13826.

Prospective quantitative quality assurance and deformation estimation of MRI-CT image registration in simulation of head and neck radiotherapy patients.

Clin Transl Radiat Oncol. 2019;18:120-127. Kiser K; Meheissen MAM; Mohamed ASR; Kamal M; Ng SP; Elhalawani H; Jethanandani A; He R; Ding Y; Rostom Y; Hegazy N; Bahig H; Garden A; Lai S; Phan J; Gunn GB; Rosenthal D; Frank S; Brock KK; Wang J; Fuller CD. doi: 10.1016/j.ctro.2019.04.018.

Comparison of prostate delineation on multimodality imaging for MR-guided radiotherapy.

Br J Radiol. 2019;92:20180948. Pathmanathan AU; McNair HA; Schmidt MA; Brand DH; Delacroix L; Eccles CL; Gordon A; Herbert T; van As NJ; Huddart RA; Tree AC. doi: 10.1259/bjr.20180948.

Technical Note: Acceleration of online adaptive replanning with automation and parallel operations.

Med Phys. 2018;45:4370-4376. Zhang J; Ahunbay E; Li XA. doi: 10.1002/mp.13106.

Prospective in silico study of the feasibility and dosimetric advantages of MRI-guided dose adaptation for human papillomavirus positive oropharyngeal cancer patients compared with standard IMRT.

Clin Transl Radiat Oncol. 2018;11:11-18. Mohamed ASR; Bahig H; Aristophanous M; Blanchard P; Kamal M; Ding Y; Cardenas CE; Brock KK; Lai SY; Hutcheson KA; Phan J; Wang J; Ibbott G; Gabr RE; Narayana PA; Garden AS; Rosenthal DI; Gunn GB; Fuller CD. doi: 10.1016/j.ctro.2018.04.005.

Evaluation of Online Plan Adaptation Strategies for the 1.5T MR-linac Based on "First-In-Man" Treatments.

Cureus. 2018;10:e2431. Winkel D; Bol GH; Kiekebosch IH; Van Asselen B; Kroon PS; Jurgenliemk-Schulz IM; Raaymakers BW. doi: 10.7759/cureus.2431.

Fast online replanning for interfraction rotation correction in prostate radiotherapy.

Med Phys. 2017;44:5034-5042. Kontaxis C; Bol GH; Kerkmeijer LGW; Lagendijk JJW; Raaymakers BW. doi: 10.1002/mp.12467.

Technical Note: Investigating the impact of field size on patient selection for the 1.5T MR-Linac.

Med Phys. 2017;44:5667-5671. Chuter RW; Whitehurst P; Choudhury A; van Herk M; McWilliam A. doi: 10.1002/mp.12557.

Towards fast online intrafraction replanning for free-breathing stereotactic body radiation therapy with the MR-linac.

Phys Med Biol. 2017;62:7233-7248. Kontaxis C; Bol GH; Stemkens B; Glitzner M; Prins FM; Kerkmeijer LGW; Lagendijk JJW; Raaymakers BW. doi: 10.1088/1361-6560/aa82ae.

Dosimetric Impact of Using a Virtual Couch Shift for Online Correction of Setup Errors for Brain Patients on an Integrated High-Field Magnetic Resonance Imaging Linear Accelerator.

Int J Radiat Oncol Biol Phys. 2017;98:699-708. Ruschin M; Sahgal A; Tseng CL; Sonier M; Keller B; Lee Y. doi: 10.1016/j.ijrobp.2017.03.004.

Development and clinical introduction of automated radiotherapy treatment planning for prostate cancer.

Phys Med Biol. 2016;61:8587-8595. Winkel D; Bol GH; van Asselen B; Hes J; Scholten V; Kerkmeijer LG; Raaymakers BW. doi: 10.1088/1361-6560/61/24/8587.

An online replanning method using warm start optimization and aperture morphing for flattening-filter-free beams.

Med Phys. 2016;43:4575. Ahunbay EE; Ates O; Li XA. doi: 10.1118/1.4955439.

The potential of MRI-guided online adaptive re-optimisation in radiotherapy of urinary bladder cancer.

Radiother Oncol. 2016;118:154-9. Vestergaard A; Hafeez S; Muren LP; Nill S; Hoyer M; Hansen VN; Gronborg C; Pedersen EM; Petersen JB; Huddart R; Oelfke U. doi: 10.1016/j.radonc.2015.11.003.

MRI-based IMRT planning for MR-linac: comparison between CT- and MRI-based plans for pancreatic and prostate cancers.

Phys Med Biol. 2016;61:3819-42. Prior P; Chen X; Botros M; Paulson ES; Lawton C; Erickson B; Li XA. doi: 10.1088/0031-9155/61/10/3819.

On-line MR imaging for dose validation of abdominal radiotherapy.

Phys Med Biol. 2015;60:8869-83. Glitzner M; Crijns SP; de Senneville BD; Kontaxis C; Prins FM; Lagendijk JJ; Raaymakers BW. doi: 10.1088/0031-9155/60/22/8869.

Towards adaptive IMRT sequencing for the MR-linac.

Phys Med Biol. 2015;60:2493-509. Kontaxis C; Bol GH; Lagendijk JJ; Raaymakers BW. doi: 10.1088/0031-9155/60/6/2493.

A new methodology for inter- and intrafraction plan adaptation for the MR-linac.

Phys Med Biol. 2015;60:7485-97. Kontaxis C; Bol GH; Lagendijk JJ; Raaymakers BW. doi: 10.1088/0031-9155/60/19/7485.

Virtual couch shift (VCS): accounting for patient translation and rotation by online IMRT re-optimization.

Phys Med Biol. 2013;58:2989-3000. Bol GH; Lagendijk JJ; Raaymakers BW. doi: 10.1088/0031-9155/58/9/2989.

Dosimetry

A comparison of measured and treatment planning system out-of-field dose for a 1.5 T MR linac.

Phys Med Biol. 2023;68:20NT01. Powers M; Baines JA. doi: 10.1088/1361-6560/acf912.

Quantifying uncertainties associated with reference dosimetry in an MR-Linac.

J Appl Clin Med Phys. 2023;:e14087. Iakovenko V; Keller B; Malkov VN; Sahgal A; Sarfehnia A. doi: 10.1002/acm2.14087.

High-resolution entry and exit surface dosimetry in a 1.5 T MR-linac.

Phys Eng Sci Med. 2023;46:787-800. Patterson E; Stokes P; Cutajar D; Rosenfeld A; Baines J; Metcalfe P; Powers M. doi: 10.1007/s13246-023-01251-6.

Comparison of Prospectively Generated Glioma Treatment Plans Clinically Delivered on Magnetic Resonance Imaging (MRI)-Linear Accelerator (MR-Linac) Versus Conventional Linac: Predicted and Measured Skin Dose.

Technol Cancer Res Treat. 2022;21:15330338221124695. Wang MH; Kim A; Ruschin M; Tan H; Soliman H; Myrehaug S; Detsky J; Husain Z; Atenafu EG; Keller B; Sahgal A; Tseng CL. doi: 10.1177/15330338221124695.

Dosimetric characterization of a novel commercial plastic scintillation detector with an MR-Linac.

Med Phys. 2023;50:2525-2539. Ferrer C; Huertas C; García D; Sáez M. doi: 10.1002/mp.16204.

Magnetic field induced dose effects in radiation therapy using MR-linacs.

Med Phys. 2023;50:3623-3636. Huang CY; Yang B; Lam WW; Geng H; Cheung KY; Yu SK. doi: 10.1002/mp.16397.

Performance of the HYPERSCINT scintillation dosimetry research platform for the 1.5 T MR-linac.

Phys Med Biol. 2023;68:04NT01. Uijtewaal P; Côté B; Foppen T; de Vries W; Woodings S; Borman P; Lambert-Girard S; Therriault-Proulx F; Raaymakers B; Fast M. doi: 10.1088/1361-6560/acb30c.

Dosimetry in 1.5 T MR-Linacs: Monte Carlo determination of magnetic field correction factors and investigation of the air gap effect.

Med Phys. 2023;50:1132-1148. Margaroni V; Pappas EP; Episkopakis A; Pantelis E; Papagiannis P; Marinos N; Karaiskos P. doi: 10.1002/mp.16082.

ACPSEM position paper: dosimetry for magnetic resonance imaging linear accelerators.

Phys Eng Sci Med. 2023;46:42736. Begg J; Jelen U; Moutrie Z; Oliver C; Holloway L; Brown R. doi: 10.1007/s13246-023-01223-w.

Dosimetric evaluation of off-axis fields and angular transmission for the 1.5 T MR-linac.

Phys Med Biol. 2022;67:205009. van den Dobbelsteen M; Hackett SL; de Vries JHW; van Asselen B; Oolbekkink S; Woodings SJ; Raaymakers BW. doi: 10.1088/1361-6560/ac95f3.

Monte Carlo optimization and experimental validation of a prototype ionization chamber for accurate magnetic resonance image guided radiation therapy (MRgRT) daily output constancy measurements in solid phantoms.

Med Phys. 2022;49:5483-5490. Muir BR; Nusrat H; Sarfehnia A; Renaud J. doi: 10.1002/mp.15695.

Dosimetric evaluation of irradiation geometry and potential air gaps in an acrylic miniphantom used for external audit of absolute dose calibration for a hybrid 1.5 T MR-linac system.

J Appl Clin Med Phys. 2022;23:e13503. Tyagi N; Subashi E; Michael Lovelock D; Kry S; Alvarez PE; Hunt MA; Lim SB. doi: 10.1002/acm2.13503.

Impact of field number and beam angle on ERE for lung stereotactic body radiotherapy with 1.5T MR-Linac.

Cancer Radiother. 2021;25:366-372. Ding S; Liu H; Wang B; Li Y; Li R; Liu B; Xia Y; Huang X. doi: 10.1016/j.canrad.2021.01.006.

End-to-end validation of the geometric dose delivery performance of MR linac adaptive radiotherapy.

Phys Med Biol. 2021;66:045034. Bernchou U; Christiansen RL; Bertelsen A; Tilly D; Riis HL; Jensen HR; Mahmood F; Hansen CR; Hansen VN; Schytte T; Brink C. doi: 10.1088/1361-6560/abd3ed.

Traceable reference dosimetry in MRI guided radiotherapy using alanine: calibration and magnetic field correction factors of ionisation chambers.

Phys Med Biol. 2021;66:165006. Billas I; Bouchard H; Oelfke U; Duane S. doi: 10.1088/1361-6560/ac0680.

Effects on skin dose from unwanted air gaps under bolus in an MR-guided linear accelerator (MR-linac) system.

Phys Med Biol. 2021;66:065021. Huang CY; Yang B; Lam WW; Tang KK; Li TC; Law WK; Cheung KY; Yu SK. doi: 10.1088/1361-6560/abe837.

Reference dosimetry in MRI-linacs: evaluation of available protocols and data to establish a Code of Practice.

Phys Med Biol. 2021;66:05TR02-05TR02. de Pooter J; Billas I; de Prez L; Duane S; Kapsch RP; Karger CP; van Asselen B; Wolthaus J. doi: 10.1088/1361-6560/ab9efe.

Automatic dosimetric verification of online adapted plans on the Unity MR-Linac using 3D EPID dosimetry.

Radiother Oncol. 2021;157:241-246. Olaciregui-Ruiz I; Vivas-Maiques B; van der Velden S; Nowee ME; Mijnheer B; Mans A. doi: 10.1016/j.radonc.2021.01.037.

Analysis of the electron-stream effect in patients treated with partial breast irradiation using the 1.5 T MR-linear accelerator.

Clin Transl Radiat Oncol. 2021;27:103-108. De-Colle C; Nachbar M; Mnnich D; Boeke S; Gani C; Weidner N; Heinrich V; Winter J; Tsitsekidis S; Dohm O; Zips D; Thorwarth D. doi: 10.1016/j.ctro.2020.12.005.

Out-of-field dose assessment for a 1.5 T MR-Linac with optically stimulated luminescence dosimeters.

Med Phys. 2021;48:4027-4037. Zhang Y; Yan S; Cui Z; Wang Y; Li Z; Yin Y; Li B; Quan H; Zhu J. doi: 10.1002/mp.14839.

Out-of-field dose and its constituent components for a 1.5 T MR-Linac.

Phys Med Biol. 2021;66:225012. Yang B; Tang KK; Huang CY; Geng H; Lam WW; Wong YS; Tse MY; Lau KK; Cheung KY; Yu SK. doi: 10.1088/1361-6560/ac3346.

Experimental determination of magnetic field correction factors for ionization chambers in parallel and perpendicular orientations.

Phys Med Biol. 2020;65:245044. Pojtinger S; Nachbar M; Ghandour S; Pisaturo O; Pachoud M; Kapsch RP; Thorwarth D. doi: 10.1088/1361-6560/abca06.

Water calorimetry in MR-linac: Direct measurement of absorbed dose and determination of chamber k Q mag.

Med Phys. 2020;47:6458-6469. D'Souza M; Nusrat H; Iakovenko V; Keller B; Sahgal A; Renaud J; Sarfehnia A. doi: 10.1002/mp.14468.

Influence of beam quality on reference dosimetry correction factors in magnetic resonance guided radiation therapy.

Phys Imaging Radiat Oncol. 2020;16:95-98. Pojtinger S; Nachbar M; Kapsch RP; Thorwarth D. doi: 10.1016/j.phro.2020.10.005.

First-stage validation of a portable imageable MR-compatible water calorimeter.

Med Phys. 2020;47:5312-5323. D'Souza M; Nusrat H; Renaud J; Peterson G; Sarfehnia A. doi: 10.1002/mp.14448.

Impact of varying air cavity on planning dosimetry for rectum patients treated on a 1.5 T hybrid MR-linac system.

J Appl Clin Med Phys. 2020;21:144-152. Godoy Scripes P; Subashi E; Burleson S; Liang J; Romesser P; Crane C; Mechalakos J; Hunt M; Tyagi N. doi: 10.1002/acm2.12903.

Experimental verification the electron return effect around spherical air cavities for the MR-Linac using Monte Carlo calculation.

Med Phys. 2020;47:2506-2515. Shortall J; Vasquez Osorio E; Aitkenhead A; Berresford J; Agnew J; Budgell G; Chuter R; McWilliam A; Kirkby K; Mackay R; van Herk M. doi: 10.1002/mp.14123.

Measurement of surface dose in an MR-Linac with optically stimulated luminescence dosimeters for IMRT beam geometries.

Med Phys. 2020;47:3133-3142. Lim-Reinders S; Keller BM; Sahgal A; Chugh B; Kim A. doi: 10.1002/mp.14185.

Alanine dosimetry in strong magnetic fields: use as a transfer standard in MRI-guided radiotherapy.

Phys Med Biol. 2020;65:115001. Billas I; Bouchard H; Oelfke U; Shipley D; Gouldstone C; Duane S. doi: 10.1088/1361-6560/ab8148.

Edge effects in 3D dosimetry: characterisation and correction of the non-uniform dose response of PRESAGE((R)).

Phys Med Biol. 2020;65:095003. Costa F; Doran SJ; Hanson IM; Adamovics J; Nill S; Oelfke U. doi: 10.1088/1361-6560/ab7d52.

Surface and near-surface dose measurements at beam entry and exit in a 1.5 T MR-Linac using optically stimulated luminescence dosimeters.

Phys Med Biol. 2020;65:045012. Kim A; Lim-Reinders S; Ahmad SB; Sahgal A; Keller BM. doi: 10.1088/1361-6560/ab64b6.

In-Air Electron Streaming Effect for Esophageal Cancer Radiotherapy With a 1.5 T Perpendicular Magnetic Field: A Treatment Planning Study.

Front Oncol. 2020;10:607061. Liu H; Ding S; Wang B; Li Y; Sun Y; Huang X. doi: 10.3389/fonc.2020.607061.

Experimental measurement of ionization chamber angular response and associated magnetic field correction factors in MR-linac.

Med Phys. 2020;47:1940-1948. Iakovenko V; Keller B; Sahgal A; Sarfehnia A. doi: 10.1002/mp.14025.

Impact of Magnetic Field on Dose Distribution in MR-Guided Radiotherapy of Head and Neck Cancer.

Front Oncol. 2020;10:1739. Xia W; Zhang K; Li M; Tian Y; Men K; Wang J; Yi J; Li Y; Dai J. doi: 10.3389/fonc.2020.01739.

Dose rate and fractionation dependence of methacrylic acid based polymer gels using optical and MRI techniques.

J. Phys.: Conf. Ser.. 2019;1305:012008. Lee Hannah J.; Roed Yvonne; Ibbott Geoffrey S.. doi: 10.1088/1742-6596/1305/1/012008.

Two-dimensional EPID dosimetry for an MR-linac: Proof of concept.

Med Phys. 2019;46:4193-4203. Torres-Xirau I; Olaciregui-Ruiz I; van der Heide UA; Mans A. doi: 10.1002/mp.13664.

Technical Note: Consistency of PTW30013 and FC65-G ion chamber magnetic field correction factors.

Med Phys. 2019;46:3739-3745. Woodings SJ; van Asselen B; van Soest TL; de Prez LA; Lagendijk JJW; Raaymakers BW; Wolthaus JWH. doi: 10.1002/mp.13623.

Characterization of small PRESAGE® samples for measurements near the dosimeter edges.

J. Phys.: Conf. Ser.. 2019;1305:012009. Costa Filipa; Doran Simon; Adamovics John; Nill Simeon; Hanson Ian M; Oelfke Uwe. doi: 10.1088/1742-6596/1305/1/012009.

Investigation of TLD and EBT3 performance under the presence of 1.5T, 0.35T, and 0T magnetic field strengths in MR/CT visible materials.

Med Phys. 2019;46:3217-3226. Steinmann A; O'Brien D; Stafford R; Sawakuchi G; Wen Z; Court L; Fuller C; Followill D. doi: 10.1002/mp.13527.

A finite element method for the determination of the relative response of ionization chambers in MR-linacs: simulation and experimental validation up to 1.5 T.

Phys Med Biol. 2019;64:135011. Pojtinger S; Kapsch RP; Dohm OS; Thorwarth D. doi: 10.1088/1361-6560/ab2837.

Monte Carlo simulations of out-of-field surface doses due to the electron streaming effect in orthogonal magnetic fields.

Phys Med Biol. 2019;64:115029. Malkov VN; Hackett SL; Wolthaus JWH; Raaymakers BW; van Asselen B. doi: 10.1088/1361-6560/ab0aa0.

MRIgRT dynamic lung motion thorax anthropomorphic QA phantom: Design, development, reproducibility, and feasibility study.

Med Phys. 2019;46:5124-5133. Steinmann A; Alvarez P; Lee H; Court L; Stafford R; Sawakuchi G; Wen Z; Fuller C; Followill D. doi: 10.1002/mp.13757.

Commissioning and performance evaluation of RadCalc for the Elekta unity MRI-linac.

J Appl Clin Med Phys. 2019;20:54-62. Graves SA; Snyder JE; Boczkowski A; St-Aubin J; Wang D; Yaddanapudi S; Hyer DE. doi: 10.1002/acm2.12760.

Radiotherapy in the presence of magnetic fields: a brief review of detector response characteristics and the contribution of 3-D measurements to the study of dose distributions at interfaces.

J. Phys.: Conf. Ser.. 2019;1305:012006. Doran Simon J. doi: 10.1088/1742-6596/1305/1/012006.

Measurement validation of treatment planning for a MR-Linac.

J Appl Clin Med Phys. 2019;20:28-38. Chen X; Paulson ES; Ahunbay E; Sanli A; Klawikowski S; Li XA. doi: 10.1002/acm2.12651.

Evaluation of a lung-equivalent gel dosimeter for MR image-guided radiation therapy.

J. Phys.: Conf. Ser.. 2019;1305:012012. McDonald BA; Lee HJ; Ibbott GS. doi: 10.1088/1742-6596/1305/1/012012.

Assessing localized dosimetric effects due to unplanned gas cavities during pelvic MR-guided radiotherapy using Monte Carlo simulations.

Med Phys. 2019;46:5807-5815. Shortall J; Vasquez Osorio E; Chuter R; McWilliam A; Choudhury A; Kirkby K; Mackay R; van Herk M. doi: 10.1002/mp.13857.

Polymer gel dosimetry in the presence of a strong magnetic field.

J. Phys.: Conf. Ser.. 2019;1305:012014. Roed Y; Pinsky L; Ibbott G. doi: 10.1088/1742-6596/1305/1/012014.

Commissioning of a water calorimeter as a primary standard for absorbed dose to water in magnetic fields.

Phys Med Biol. 2019;64:035013. de Prez L; de Pooter J; Jansen B; Woodings S; Wolthaus J; van Asselen B; van Soest T; Kok J; Raaymakers B. doi: 10.1088/1361-6560/aaf975.

Dosimetric performance of the Elekta Unity MR-linac system: 2D and 3D dosimetry in anthropomorphic inhomogeneous geometry.

Phys Med Biol. 2019;64:225009. Pappas E; Kalaitzakis G; Boursianis T; Zoros E; Zourari K; Pappas EP; Makris D; Seimenis I; Efstathopoulos E; Maris TG. doi: 10.1088/1361-6560/ab52ce.

Monte Carlo simulations of out-of-field skin dose due to spiralling contaminant electrons in a perpendicular magnetic field.

Med Phys. 2019;46:1467-1477. Malkov VN; Hackett SL; van Asselen B; Raaymakers BW; Wolthaus JWH. doi: 10.1002/mp.13392.

The MD Anderson experience with 3D dosimetry and an MR-linac.

J. Phys.: Conf. Ser.. 2019;1305:012011. Ibbott Geoffrey S.; Le Hannah J.; Roe Yvonne. doi: 10.1088/1742-6596/1305/1/012011.

Low-density gel dosimeter for measurement of the electron return effect in an MR-linac.

Phys Med Biol. 2019;64:205016. McDonald BA; Lee HJ; Ibbott GS. doi: 10.1088/1361-6560/ab4321.

Direct measurement of ion chamber correction factors, k Q and k B, in a 7 MV MRI-linac.

Phys Med Biol. 2019;64:105025. de Prez L; Woodings S; de Pooter J; van Asselen B; Wolthaus J; Jansen B; Raaymakers B. doi: 10.1088/1361-6560/ab1511.

Measurement of Electron Return Effect and Skin Dose Reduction by a Bolus in an Anthropomorphic Physical Phantom under a Magnetic Resonance Guided Linear Accelerator (MR-LINAC) System.

IJMPCERO. 2018;07:339-346. Han Eun Young; Wen Zhifei; Lee Hannah J.; Paulino Arnold dela Cruz; Lee Choonsik. doi: 10.4236/ijmpcero.2018.73028.

The radiobiological impact of motion tracking of liver, pancreas and kidney SBRT tumors in a MR-linac.

Phys Med Biol. 2018;63:215022. Al-Ward S; Wronski M; Ahmad SB; Myrehaug S; Chu W; Sahgal A; Keller BM. doi: 10.1088/1361-6560/aae7fd.

Real-time volumetric relative dosimetry for magnetic resonance-image-guided radiation therapy (MR-IGRT).

Phys Med Biol. 2018;63:045021-045021. Lee HJ; Kadbi M; Bosco G; Ibbott GS. doi: 10.1088/1361-6560/aaac22.

Relative dosimetry with an MR-linac: Response of ion chambers, diamond, and diode detectors for off-axis, depth dose, and output factor measurements.

Med Phys. 2018;45:884-897. O'Brien DJ; Dolan J; Pencea S; Schupp N; Sawakuchi GO. doi: 10.1002/mp.12699.

A formalism for reference dosimetry in photon beams in the presence of a magnetic field.

Phys Med Biol. 2018;63:125008. van Asselen B; Woodings SJ; Hackett SL; van Soest TL; Kok JGM; Raaymakers BW; Wolthaus JWH. doi: 10.1088/1361-6560/aac70e.

A methodology to investigate the impact of image distortions on the radiation dose when using magnetic resonance images for planning.

Phys Med Biol. 2018;63:085005. Yan Y; Yang J; Beddar S; Ibbott G; Wen Z; Court LE; Hwang KP; Kadbi M; Krishnan S; Fuller CD; Frank SJ; Yang J; Balter P; Kudchadker RJ; Wang J. doi: 10.1088/1361-6560/aab5c3.

Effect of Magnetic Field Strength on Plastic Scintillation Detector Response.

Radiat Meas. 2018;116:10-13. Therriault-Proulx F; Wen Z; Ibbott G; Beddar S. doi: 10.1016/j.radmeas.2018.06.011.

Ionization chamber correction factors for MR-linacs.

Phys Med Biol. 2018;63:11NT03. Pojtinger S; Dohm OS; Kapsch RP; Thorwarth D. doi: 10.1088/1361-6560/aac4f2.

Spiraling contaminant electrons increase doses to surfaces outside the photon beam of an MRI-linac with a perpendicular magnetic field.

Phys Med Biol. 2018;63:095001. Hackett SL; van Asselen B; Wolthaus JWH; Bluemink JJ; Ishakoglu K; Kok J; Lagendijk JJW; Raaymakers BW. doi: 10.1088/1361-6560/aaba8f.

Performance of a PTW 60019 microDiamond detector in a 1.5 T MRI-linac.

Phys Med Biol. 2018;63:05NT04. Woodings SJ; Wolthaus JWH; van Asselen B; de Vries JHW; Kok JGM; Lagendijk JJW; Raaymakers BW. doi: 10.1088/1361-6560/aaa1c6.

Characterization of the a-Si EPID in the unity MR-linac for dosimetric applications.

Phys Med Biol. 2018;63:025006. Torres-Xirau I; Olaciregui-Ruiz I; Baldvinsson G; Mijnheer BJ; van der Heide UA; Mans A. doi: 10.1088/1361-6560/aa9dbf.

Investigating the effect of a magnetic field on dose distributions at phantom-air interfaces using PRESAGE® 3D dosimeter and Monte Carlo simulations.

Phys Med Biol. 2018;63:05NT01. Costa F; Doran SJ; Hanson IM; Nill S; Billas I; Shipley D; Duane S; Adamovics J; Oelfke U. doi: 10.1088/1361-6560/aaaca2.

Assessing MR-linac radiotherapy robustness for anatomical changes in head and neck cancer.

Phys Med Biol. 2018;63:125020. Chuter RW; Pollitt A; Whitehurst P; MacKay RI; van Herk M; McWilliam A. doi: 10.1088/1361-6560/aac749.

The characterization of a large multi-axis ionization chamber array in a 1.5 T MRI linac.

Phys Med Biol. 2018;63:225007. Perik TJ; Kaas JJ; Greilich S; Wolthaus JWH; Wittkamper FW. doi: 10.1088/1361-6560/aae90a.

Assessment of image quality and scatter and leakage radiation of an integrated MR-LINAC system.

Med Phys. 2018;45:1204-1209. Wang J; Yung J; Kadbi M; Hwang K; Ding Y; Ibbott GS. doi: 10.1002/mp.12767.

Beam characterisation of the 1.5 T MRI-linac.

Phys Med Biol. 2018;63:085015. Woodings SJ; Bluemink JJ; de Vries JHW; Niatsetski Y; van Veelen B; Schillings J; Kok JGM; Wolthaus JWH; Hackett SL; van Asselen B; van Zijp HM; Pencea S; Roberts DA; Lagendijk JJW; Raaymakers BW. doi: 10.1088/1361-6560/aab566.

Development of a methodology to study the effect of magnetic field on dose distributions in an MR_linac, using PRESAGE® and Monte Carlo calculations.

J. Phys.: Conf. Ser.. 2017;847:012058. Costa F; Doran S; Nill S; Duane S; Shipley D; Billas I; Adamovics J; Oelfke U. doi: 10.1088/1742-6596/847/1/012058.

Monte Carlo study of the chamber-phantom air gap effect in a magnetic field.

Med Phys. 2017;44:3830-3838. O'Brien DJ; Sawakuchi GO. doi: 10.1002/mp.12290.

Using 3D dosimetry to quantify the Electron Return Effect (ERE) for MR-image-guided radiation therapy (MR-IGRT) applications.

J. Phys.: Conf. Ser.. 2017;847:012057. Lee Hannah J; Won Choi Gye; Alqathami Mamdooh; Kadbi Mo; Ibbott Geoffrey. doi: 10.1088/1742-6596/847/1/012057.

Experimental analysis of correction factors for reference dosimetry in a magnetic field.

Current Directions in Biomedical Engineering. 2017;3:803-805. Brand Nicole; Pojtinger Stefan; Tsitsekidis Savas; Thorwarth Daniela; Dohm Oliver S.. doi: 10.1515/cdbme-2017-0170.

Influence of a transverse magnetic field on the dose deposited by a 6 MV linear accelerator.

Current Directions in Biomedical Engineering. 2017;3:281-285. Richter Sebastian; Pojtinger Stefan; Mönnich David; Dohm Oliver S.; Thorwarth Daniela. doi: 10.1515/cdbme-2017-0058.

Dosimetric feasibility of the hybrid Magnetic Resonance Imaging (MRI)-linac System (MRL) for brain metastases: The impact of the magnetic field.

Radiother Oncol. 2017;125:273-279. Tseng CL; Eppinga W; Seravalli E; Hackett S; Brand E; Ruschin M; Lee YK; Atenafu EG; Sahgal A. doi: 10.1016/j.radonc.2017.09.036.

Quantification of static magnetic field effects on radiotherapy ionization chambers.

Phys Med Biol. 2017;62:1731-1743. Agnew J; O'Grady F; Young R; Duane S; Budgell GJ. doi: 10.1088/1361-6560/aa5876.

Treating locally advanced lung cancer with a 1.5T MR-Linac - Effects of the magnetic field and irradiation geometry on conventionally fractionated and isotoxic dose-escalated radiotherapy.

Radiother Oncol. 2017;125:280-285. Bainbridge HE; Menten MJ; Fast MF; Nill S; Oelfke U; McDonald F. doi: 10.1016/j.radonc.2017.09.009.

The dosimetric impact of gadolinium-based contrast media in GBM brain patient plans for a MRI-Linac.

Phys Med Biol. 2017;62:N362-N374. Ahmad SB; Paudel MR; Sarfehnia A; Kim A; Pang G; Ruschin M; Sahgal A; Keller BM. doi: 10.1088/1361-6560/aa7acb.

Optimal orientation for ionization chambers in MRgRT reference dosimetry.

Current Directions in Biomedical Engineering. 2017;3:273-275. Pojtinger Stefan; Dohm Oliver S.; Thorwarth Daniela. doi: 10.1515/cdbme-2017-0056.

Investigation of magnetic field effects on the dose-response of 3D dosimeters for magnetic resonance - image guided radiation therapy applications.

Radiother Oncol. 2017;125:426-432. Lee HJ; Roed Y; Venkataraman S; Carroll M; Ibbott GS. doi: 10.1016/j.radonc.2017.08.027.

Dosimetry in the presence of strong magnetic fields.

J. Phys.: Conf. Ser.. 2017;847:012055. O’Brien D J; Schupp N; Pencea S; Dolan J; Sawakuchi G O. doi: 10.1088/1742-6596/847/1/012055.

Magnetic field dose effects on different radiation beam geometries for hypofractionated partial breast irradiation.

J Appl Clin Med Phys. 2017;18:62-70. Kim A; Lim-Reinders S; McCann C; Ahmad SB; Sahgal A; Lee J; Keller BM. doi: 10.1002/acm2.12182.

The impact of a 1.5 T MRI linac fringe field on neighbouring linear accelerators.

Physics and Imaging in Radiation Oncology. 2017;4:12-16. Perik Thijs; Kaas Jochem; Wittkämper Frits. doi: 10.1016/j.phro.2017.10.002.

Backscatter dose effects for high atomic number materials being irradiated in the presence of a magnetic field: A Monte Carlo study for the MRI linac.

Med Phys. 2016;43:4665. Ahmad SB; Sarfehnia A; Kim A; Wronski M; Sahgal A; Keller BM. doi: 10.1118/1.4955175.

Evaluation of a commercial MRI Linac based Monte Carlo dose calculation algorithm with GEANT4.

Med Phys. 2016;43:894-907. Ahmad SB; Sarfehnia A; Paudel MR; Kim A; Hissoiny S; Sahgal A; Keller B. doi: 10.1118/1.4939808.

Minimizing the magnetic field effect in MR-linac specific QA-tests: the use of electron dense materials.

Phys Med Biol. 2016;61:N50-9. van Zijp HM; van Asselen B; Wolthaus JW; Kok JM; de Vries JH; Ishakoglu K; Beld E; Lagendijk JJ; Raaymakers BW. doi: 10.1088/0031-9155/61/3/N50.

Technical Note: Dose effects of 1.5 T transverse magnetic field on tissue interfaces in MRI-guided radiotherapy.

Med Phys. 2016;43:4797. Chen X; Prior P; Chen GP; Schultz CJ; Li XA. doi: 10.1118/1.4959534.

Consequences of air around an ionization chamber: Are existing solid phantoms suitable for reference dosimetry on an MR-linac?

Med Phys. 2016;43:3961. Hackett SL; van Asselen B; Wolthaus JW; Kok JG; Woodings SJ; Lagendijk JJ; Raaymakers BW. doi: 10.1118/1.4952727.

Performance of a cylindrical diode array for use in a 1.5 T MR-linac.

Phys Med Biol. 2016;61:N80-9. Houweling AC; de Vries JH; Wolthaus J; Woodings S; Kok JG; van Asselen B; Smit K; Bel A; Lagendijk JJ; Raaymakers BW. doi: 10.1088/0031-9155/61/3/N80.

Reference dosimetry in magnetic fields: formalism and ionization chamber correction factors.

Med Phys. 2016;43:4915. O'Brien DJ; Roberts DA; Ibbott GS; Sawakuchi GO. doi: 10.1118/1.4959785.

Lung stereotactic body radiotherapy with an MR-linac - Quantifying the impact of the magnetic field and real-time tumor tracking.

Radiother Oncol. 2016;119:461-6. Menten MJ; Fast MF; Nill S; Kamerling CP; McDonald F; Oelfke U. doi: 10.1016/j.radonc.2016.04.019.

Gel dosimetry enables volumetric evaluation of dose distributions from an MR_guided linac.

AIP Conf. Proc.. 2016;1747:40002. Ibbott Geoffrey; Roed Yvonne; Lee Hannah; Alqathami Mamdooh; Wang Jihong; Pinsky Lawrence; Blencowe Anton. doi: 10.1063/1.4954102.

Experimental evaluation of a GPU-based Monte Carlo dose calculation algorithm in the Monaco treatment planning system.

J Appl Clin Med Phys. 2016;17:230-241. Paudel MR; Kim A; Sarfehnia A; Ahmad SB; Beachey DJ; Sahgal A; Keller BM. doi: 10.1120/jacmp.v17i6.6455.

A 1.5 T transverse magnetic field in radiotherapy of rectal cancer: Impact on the dose distribution.

Med Phys. 2015;42:7182-9. Uilkema S; van der Heide U; Sonke JJ; Moreau M; van Triest B; Nijkamp J. doi: 10.1118/1.4936097.

Relative dosimetry in a 1.5 T magnetic field: an MR-linac compatible prototype scanning water phantom.

Phys Med Biol. 2014;59:4099-109. Smit K; Sjoholm J; Kok JG; Lagendijk JJ; Raaymakers BW. doi: 10.1088/0031-9155/59/15/4099.

Performance of a multi-axis ionization chamber array in a 1.5 T magnetic field.

Phys Med Biol. 2014;59:1845-55. Smit K; Kok JG; Lagendijk JJ; Raaymakers BW. doi: 10.1088/0031-9155/59/7/1845.

MRI

Evaluation of non-vendor magnetic resonance imaging sequences for use in bladder cancer magnetic resonance image guided radiotherapy.

Phys Imaging Radiat Oncol. 2023;27:100481. Chick J; Alexander S; Herbert T; Huddart R; Ingle M; Mitchell A; Nill S; Oelfke U; Dunlop A; Hafeez S. doi: 10.1016/j.phro.2023.100481.

Real-time 4D MRI using MR signature matching (MRSIGMA) on a 1.5T MR-Linac system.

Phys Med Biol. 2023;68: 185015. Wu C; Murray V; Siddiq SS; Tyagi N; Reyngold M; Crane C; Otazo R. doi: 10.1088/1361-6560/acf3cc.

Accelerating 4D image reconstruction for magnetic resonance-guided radiotherapy.

Phys Imaging Radiat Oncol. 2023;27:100484. Lecoeur Bastien; Barbone Marco; Gough Jessica; Oelfke Uwe; Luk Wayne; Gaydadjiev Georgi; Wetscherek Andreas. doi: 10.1016/j.phro.2023.100484.

On-board MRI image compression using video encoder for MR-guided radiotherapy.

Quant Imaging Med Surg. 2023;13:5207-5217. Shang J; Huang P; Zhang K; Dai J; Yan H. doi: 10.21037/qims-22-1378.

Improving accelerated 3D imaging in MRI-guided radiotherapy for prostate cancer using a deep learning method.

Radiat Oncol. 2023;18:108. Zhu J; Chen X; Liu Y; Yang B; Wei R; Qin S; Yang Z; Hu Z; Dai J; Men K. doi: 10.1186/s13014-023-02306-4.

Current practices and perspectives on the integration of contrast agents in MRI-guided radiation therapy clinical practice: A worldwide survey.

Clin Transl Radiat Oncol. 2023;40:100615. Boldrini L; Alongi F; Romano A; Charles Davies D; Bassetti M; Chiloiro G; Corradini S; Gambacorta MA; Placidi L; Tree AC; Westley R; Nicosia L. doi: 10.1016/j.ctro.2023.100615.

Feasibility of online radial magnetic resonance imaging for adaptive radiotherapy of pancreatic tumors.

Phys Imaging Radiat Oncol. 2023;26:100434. Grimbergen G; Eijkelenkamp H; van Vulpen JK; van de Ven S; Raaymakers BW; Intven MPW; Meijer GJ. doi: 10.1016/j.phro.2023.100434.

Safety of gadolinium based contrast agents in magnetic resonance imaging-guided radiotherapy - An investigation of chelate stability using relaxometry.

Phys Imaging Radiat Oncol. 2022;21:96-100. Mahmood F; Nielsen UG; Jorgensen CB; Brink C; Thomsen HS; Hansen RH. doi: 10.1016/j.phro.2022.02.015.

Predicting necessity of daily online adaptive replanning based on wavelet image features for MRI guided adaptive radiation therapy.

Radiother Oncol. 2022;176:165-171. Nasief HG; Parchur AK; Omari E; Zhang Y; Chen X; Paulson E; Hall WA; Erickson B; Li XA. doi: 10.1016/j.radonc.2022.10.001.

To see or not to see: Evaluation of magnetic resonance imaging sequences for use in MR Linac-based radiotherapy treatment.

J Med Imaging Radiat Sci. 2022;53:362-373. Whiteside L; McDaid L; Hales RB; Rodgers J; Dubec M; Huddart RA; Choudhury A; Eccles CL. doi: 10.1016/j.jmir.2022.06.005.

A hybrid 2D/4D-MRI methodology using simultaneous multislice imaging for radiotherapy guidance.

Med Phys. 2022;49:6068-6081. Keijnemans K; Borman PTS; Uijtewaal P; Woodhead PL; Raaymakers BW; Fast MF. doi: 10.1002/mp.15802.

Time-course assessment of 3D-image distortion on the 1.5 T Marlin/Elekta Unity MR-LINAC.

Phys Med. 2022;100:90-98. Damyanovich AZ; Tadic T; Foltz WD; Jelveh S; Bissonnette JP. doi: 10.1016/j.ejmp.2022.05.009.

A mask-compatible, radiolucent, 8-channel head and neck receive array for MRI-guided radiotherapy treatments and pre-treatment simulation.

Phys Med Biol. 2022;67:135006. Zijlema SE; Breimer W; Gosselink MWJM; Bruijnen T; Arteaga de Castro CS; Tijssen RHN; Lagendijk JJW; Philippens MEP; van den Berg CAT. doi: 10.1088/1361-6560/ac6ebd.

The impact of gadolinium-based MR contrast on radiotherapy planning for oropharyngeal treatment on the MR Linac.

Med Phys. 2022;49:510-520. Hales RB; Chuter R; McWilliam A; Salah A; Dubec M; Freear L; McDaid L; Aznar M; van Herk M; McPartlin A; Eccles CL. doi: 10.1002/mp.15325.

Quantification of magnetic susceptibility fingerprint of a 3D linearity medical device.

Phys Med. 2021;87:39-48. Stanescu T; Mousavi SH; Cole M; Barberi E; Wachowicz K. doi: 10.1016/j.ejmp.2021.05.023.

On the use of low-dimensional temporal subspace constraints to reduce reconstruction time and improve image quality of accelerated 4D-MRI.

Radiother Oncol. 2021;158:215-223. Mickevicius NJ; Paulson ES. doi: 10.1016/j.radonc.2020.12.032.

Geometrical imaging accuracy and imaging and plan quality for prostate cancer on a 1.5T MRLinac in patients with a unilateral hip implant.

Phys Med Biol. 2021;66:205013. van Lier ALHMW; Meijers LTC; Philippens MEP; Hes J; Raaymakers BW; van der Voort van Zyp JRN; de Boer JCJ. doi: 10.1088/1361-6560/ac1302.

Feasibility of MR-guided radiotherapy using beam-eye-view 2D-cine with tumor-volume projection.

Phys Med Biol. 2021;66:045020. Nie X; Rimner A; Li G. doi: 10.1088/1361-6560/abd66a.

A Comparison of the Distortion in the Same Field MRI and MR-Linac System With a 3D Printed Phantom.

Front Oncol. 2021;11:579451. Liu X; Li Z; Rong Y; Cao M; Li H; Jia C; Shi L; Lu W; Gong G; Yin Y; Qiu J. doi: 10.3389/fonc.2021.579451.

MR SIGnature MAtching (MRSIGMA) with retrospective self-evaluation for real-time volumetric motion imaging.

Phys Med Biol. 2021;66:215009. Kim N; Tringale KR; Crane C; Tyagi N; Otazo R. doi: 10.1088/1361-6560/ac2dd2.

Nonrigid 3D motion estimation at high temporal resolution from prospectively undersampled k-space data using low-rank MR-MOTUS.

Magn Reson Med. 2021;85:2309-2326. Huttinga NRF; Bruijnen T; van den Berg CAT; Sbrizzi A. doi: 10.1002/mrm.28562.

Simultaneous multi-slice accelerated 4D-MRI for radiotherapy guidance.

Phys Med Biol. 2021;66:95014. Keijnemans K; Borman PTS; van Lier ALHMW; Verhoeff JJC; Raaymakers BW; Fast MF. doi: 10.1088/1361-6560/abf591.

Validation of a 4D-MRI guided liver stereotactic body radiation therapy strategy for implementation on the MR-linac.

Phys Med Biol. 2021;66:105010. van de Lindt TN; Fast MF; van den Wollenberg W; Kaas J; Betgen A; Nowee ME; Jansen EP; Schneider C; van der Heide UA; Sonke JJ. doi: 10.1088/1361-6560/abfada.

Stability of MRI contrast agents in high-energy radiation of a 1.5T MR-Linac.

Radiother Oncol. 2021;161:55-64. Wang J; Salzillo T; Jiang Y; Mackeyev Y; David Fuller C; Chung C; Choi S; Hughes N; Ding Y; Yang J; Vedam S; Krishnan S. doi: 10.1016/j.radonc.2021.05.023.

The impact of image acquisition time on registration, delineation and image quality for magnetic resonance guided radiotherapy of prostate cancer patients.

Phys Imaging Radiat Oncol. 2021;19:85-89. Nowee ME; van Pelt VWJ; Walraven I; Simoes R; Liskamp CP; Lambregts DMJ; Heijmink S; Schaake E; van der Heide UA; Janssen TM. doi: 10.1016/j.phro.2021.07.002.

Technical Note: Four-dimensional deformable digital phantom for MRI sequence development.

Med Phys. 2021;48:5406-5413. Hanson HM; Eiben B; McClelland JR; van Herk M; Rowland BC. doi: 10.1002/mp.15036.

Feasibility of real-time motion tracking using cine MRI during MR-guided radiation therapy for abdominal targets.

Med Phys. 2020;47:3554-3566. Keiper TD; Tai A; Chen X; Paulson E; Lathuiliere F; Beriault S; Hebert F; Cooper DT; Lachaine M; Li XA. doi: 10.1002/mp.14230.

MR-MOTUS: model-based non-rigid motion estimation for MR-guided radiotherapy using a reference image and minimal k-space data.

Phys Med Biol. 2020;65:015004. Huttinga NRF; van den Berg CAT; Luijten PR; Sbrizzi A. doi: 10.1088/1361-6560/ab554a.

A modular phantom and software to characterize 3D geometric distortion in MRI.

Phys Med Biol. 2020;65:195008. Slagowski JM; Ding Y; Aima M; Wen Z; Fuller CD; Chung C; Debnam JM; Hwang KP; Kadbi M; Szklaruk J; Wang J. doi: 10.1088/1361-6560/ab9c64.

Tumor-site specific geometric distortions in high field integrated magnetic resonance linear accelerator radiotherapy.

Phys Imaging Radiat Oncol. 2020;15:100-104. Hasler SW; Bernchou U; Bertelsen A; van Veldhuizen E; Schytte T; Hansen VN; Brink C; Mahmood F. doi: 10.1016/j.phro.2020.07.007.

4D-MRI driven MR-guided online adaptive radiotherapy for abdominal stereotactic body radiation therapy on a high field MR-Linac: Implementation and initial clinical experience.

Clin Transl Radiat Oncol. 2020;23:72-79. Paulson ES; Ahunbay E; Chen X; Mickevicius NJ; Chen GP; Schultz C; Erickson B; Straza M; Hall WA; Li XA. doi: 10.1016/j.ctro.2020.05.002.

A fast volumetric 4D-MRI with sub-second frame rate for abdominal motion monitoring and characterization in MRI-guided radiotherapy.

Quant Imaging Med Surg. 2019;9:1303-1314. Yuan J; Wong OL; Zhou Y; Chueng KY; Yu SK. doi: 10.21037/qims.2019.06.23.

Simultaneous acquisition of orthogonal plane cine imaging and isotropic 4D-MRI using super-resolution.

Radiother Oncol. 2019;136:121-129. Mickevicius NJ; Paulson ES. doi: 10.1016/j.radonc.2019.04.005.

Correcting geometric image distortions in slice-based 4D-MRI on the MR-linac.

Med Phys. 2019;46:3044-3054. Keesman R; van de Lindt TN; Juan-Cruz C; van den Wollenberg W; van der Bijl E; Nowee ME; Sonke JJ; van der Heide UA; Fast MF. doi: 10.1002/mp.13602.

Multiresolution radial MRI to reduce IDLE time in pre-beam imaging on an MR-Linac (MR-RIDDLE).

Phys Med Biol. 2019;64:055011. Bruijnen T; Stemkens B; Lagendijk JJW; van den Berg CAT; Tijssen RHN. doi: 10.1088/1361-6560/aafd6b.

Assessment of 3D motion modeling performance for dose accumulation mapping on the MR-linac by simultaneous multislice MRI.

Phys Med Biol. 2019;64:095004. Borman PTS; Bos C; Stemkens B; Moonen CTW; Raaymakers BW; Tijssen RHN. doi: 10.1088/1361-6560/ab13e3.

MRI commissioning of 1.5T MR-linac systems - a multi-institutional study.

Radiother Oncol. 2019;132:114-120. Tijssen RHN; Philippens MEP; Paulson ES; Glitzner M; Chugh B; Wetscherek A; Dubec M; Wang J; van der Heide UA. doi: 10.1016/j.radonc.2018.12.011.

MRI-guided mid-position liver radiotherapy: Validation of image processing and registration steps.

Radiother Oncol. 2019;138:132-140. van de Lindt TN; Fast MF; van Kranen SR; Nowee ME; Jansen EPM; van der Heide UA; Sonke JJ. doi: 10.1016/j.radonc.2019.06.007.

Magnetic resonance imaging sequence evaluation of an MR Linac system; early clinical experience.

Tech Innov Patient Support Radiat Oncol. 2019;12:56-63. Eccles CL; Adair Smith G; Bower L; Hafeez S; Herbert T; Hunt A; McNair HA; Ofuya M; Oelfke U; Nill S; Huddart RA. doi: 10.1016/j.tipsro.2019.11.004.

Soft-tissue prostate intrafraction motion tracking in 3D cine-MR for MR-guided radiotherapy.

Phys Med Biol. 2019;64:235008. de Muinck Keizer DM; Kerkmeijer LGW; Maspero M; Andreychenko A; van der Voort van Zyp JRN; van den Berg CAT; Raaymakers BW; Lagendijk JJW; de Boer JCJ. doi: 10.1088/1361-6560/ab5539.

Synthetic 4D-CT of the thorax for treatment plan adaptation on MR-guided radiotherapy systems.

Phys Med Biol. 2019;64:115005. Freedman JN; Bainbridge HE; Nill S; Collins DJ; Kachelriess M; Leach MO; McDonald F; Oelfke U; Wetscherek A. doi: 10.1088/1361-6560/ab0dbb.

MRI B 0 homogeneity and geometric distortion with continuous linac gantry rotation on an Elekta Unity MR-linac.

Phys Med Biol. 2019;64:12NT01. Jackson S; Glitzner M; Tijssen RHN; Raaymakers BW. doi: 10.1088/1361-6560/ab231a.

Characterization of the first RF coil dedicated to 1.5 T MR guided radiotherapy.

Phys Med Biol. 2018;63:025014. Hoogcarspel SJ; Zijlema SE; Tijssen RHN; Kerkmeijer LGW; Jürgenliemk-Schulz IM; Lagendijk JJW; Raaymakers BW. doi: 10.1088/1361-6560/aaa303.

Retrospective self-sorted 4D-MRI for the liver.

Radiother Oncol. 2018;127:474-480. van de Lindt TN; Fast MF; van der Heide UA; Sonke JJ. doi: 10.1016/j.radonc.2018.05.006.

Characterization of imaging latency for real-time MRI-guided radiotherapy.

Phys Med Biol. 2018;63:155023. Borman PTS; Tijssen RHN; Bos C; Moonen CTW; Raaymakers BW; Glitzner M. doi: 10.1088/1361-6560/aad2b7.

Magnetic Resonance Imaging only Workflow for Radiotherapy Simulation and Planning in Prostate Cancer.

Clin Oncol (R Coll Radiol). 2018;30:692-701. Kerkmeijer LGW; Maspero M; Meijer GJ; van der Voort van Zyp JRN; de Boer HCJ; van den Berg CAT. doi: 10.1016/j.clon.2018.08.009.

Nuts and bolts of 4D-MRI for radiotherapy.

Phys Med Biol. 2018;63:21TR01. Stemkens B; Paulson ES; Tijssen RHN. doi: 10.1088/1361-6560/aae56d.

Super-resolution T2-weighted 4D MRI for image guided radiotherapy.

Radiother Oncol. 2018;129:486-493. Freedman JN; Collins DJ; Gurney-Champion OJ; McClelland JR; Nill S; Oelfke U; Leach MO; Wetscherek A. doi: 10.1016/j.radonc.2018.05.015.

Simultaneous orthogonal plane cine imaging with balanced steady-state free-precession contrast using k-t GRAPPA.

Phys Med Biol. 2018;63:15NT02. Mickevicius NJ; Paulson ES. doi: 10.1088/1361-6560/aad008.

A Self-Sorting Coronal 4D-MRI Method for Daily Image Guidance of Liver Lesions on an MR-LINAC.

Int J Radiat Oncol Biol Phys. 2018;102:875-884. van de Lindt T; Sonke JJ; Nowee M; Jansen E; van Pelt V; van der Heide U; Fast M. doi: 10.1016/j.ijrobp.2018.05.029.

Tumour auto-contouring on 2d cine MRI for locally advanced lung cancer: A comparative study.

Radiother Oncol. 2017;125:485-491. Fast MF; Eiben B; Menten MJ; Wetscherek A; Hawkes DJ; McClelland JR; Oelfke U. doi: 10.1016/j.radonc.2017.09.013.

Investigation of undersampling and reconstruction algorithm dependence on respiratory correlated 4D-MRI for online MR-guided radiation therapy.

Phys Med Biol. 2017;62:2910-2921. Mickevicius NJ; Paulson ES. doi: 10.1088/1361-6560/aa54f2.

T2-Weighted 4D Magnetic Resonance Imaging for Application in Magnetic Resonance-Guided Radiotherapy Treatment Planning.

Invest Radiol. 2017;52:563-573. Freedman JN; Collins DJ; Bainbridge H; Rank CM; Nill S; Kachelriess M; Oelfke U; Leach MO; Wetscherek A. doi: 10.1097/RLI.0000000000000381.

Simultaneous orthogonal plane imaging.

Magn Reson Med. 2017;78:1700-1710. Mickevicius NJ; Paulson ES. doi: 10.1002/mrm.26555.

Consensus opinion on MRI simulation for external beam radiation treatment planning.

Radiother Oncol. 2016;121:187-192. Paulson ES; Crijns SP; Keller BM; Wang J; Schmidt MA; Coutts G; van der Heide UA. doi: 10.1016/j.radonc.2016.09.018.

Image-driven, model-based 3D abdominal motion estimation for MR-guided radiotherapy.

Phys Med Biol. 2016;61:5335-55. Stemkens B; Tijssen RH; de Senneville BD; Lagendijk JJ; van den Berg CA. doi: 10.1088/0031-9155/61/14/5335.

Motion tracking and gating

Online prediction for respiratory movement compensation: a patient-specific gating control for MRI-guided radiotherapy.

Radiat Oncol. 2023;18:149. Li Y; Li Z; Zhu J; Li B; Shu H; Ge D. doi: 10.1186/s13014-023-02341-1.

Real-time motion monitoring using orthogonal cine MRI during MR-guided adaptive radiation therapy for abdominal tumors on 1.5T MR-Linac.

Med Phys. 2023;50:3103-3116. Jassar H; Tai A; Chen X; Keiper TD; Paulson E; Lathuilière F; Bériault S; Hébert F; Savard L; Cooper DT; Cloake S; Li XA. doi: 10.1002/mp.16342.

Feasibility of delivered dose reconstruction for MR-guided SBRT of pancreatic tumors with fast, real-time 3D cine MRI.

Radiother Oncol. 2023;182:109506. Grimbergen G; Pötgens GG; Eijkelenkamp H; Raaymakers BW; Intven MPW; Meijer GJ. doi: 10.1016/j.radonc.2023.109506.

Self-supervised learning for automated anatomical tracking in medical image data with minimal human labeling effort.

Comput Methods Programs Biomed. 2022;225:107085. Frueh M; Kuestner T; Nachbar M; Thorwarth D; Schilling A; Gatidis S. doi: 10.1016/j.cmpb.2022.107085.

Intrafraction pancreatic tumor motion patterns during ungated magnetic resonance guided radiotherapy with an abdominal corset.

Phys Imaging Radiat Oncol. 2022;21:1-5. Grimbergen G; Eijkelenkamp H; Heerkens HD; Raaymakers BW; Intven MPW; Meijer GJ. doi: 10.1016/j.phro.2021.12.001.

First experimental exploration of real-time cardiorespiratory motion management for future stereotactic arrhythmia radioablation treatments on the MR-linac.

Phys Med Biol. 2022;67:65003. Akdag O; Borman PTS; Woodhead P; Uijtewaal P; Mandija S; Van Asselen B; Verhoeff JJC; Raaymakers BW; Fast MF. doi: 10.1088/1361-6560/ac5717.

First experimental demonstration of VMAT combined with MLC tracking for single and multi fraction lung SBRT on an MR-linac.

Radiother Oncol. 2022;174:149-157. Uijtewaal P; Borman PTS; Woodhead PL; Kontaxis C; Hackett SL; Verhoeff J; Raaymakers BW; Fast MF. doi: 10.1016/j.radonc.2022.07.004.

Real-Time Non-Rigid 3D Respiratory Motion Estimation for MR-Guided Radiotherapy Using MR-MOTUS.

IEEE Trans Med Imaging. 2022;41:332-346. Huttinga NRF; Bruijnen T; Van Den Berg CAT; Sbrizzi A. doi: 10.1109/TMI.2021.3112818.

Dosimetric evaluation of MRI-guided multi-leaf collimator tracking and trailing for lung stereotactic body radiation therapy.

Med Phys. 2021;48:1520-1532. Uijtewaal P; Borman PTS; Woodhead PL; Hackett SL; Raaymakers BW; Fast MF. doi: 10.1002/mp.14772.

Intrafractional motion models based on principal components in Magnetic Resonance guided prostate radiotherapy.

Phys Imaging Radiat Oncol. 2021;20:17-22. Fransson S; Tilly D; Ahnesjo A; Nyholm T; Strand R. doi: 10.1016/j.phro.2021.09.004.

The noise navigator for MRI-guided radiotherapy: an independent method to detect physiological motion.

Phys Med Biol. 2020;65:12NT01. Navest RJM; Mandija S; Zijlema SE; Stemkens B; Andreychenko A; Lagendijk JJW; van den Berg CAT. doi: 10.1088/1361-6560/ab8cd8.

Evaluation of MRI-derived surrogate signals to model respiratory motion.

Biomed Phys Eng Express. 2020;6:045015. Tran EH; Eiben B; Wetscherek A; Oelfke U; Meedt G; Hawkes DJ; McClelland JR. doi: 10.1088/2057-1976/ab944c.

Intrafraction Motion Management of Renal Cell Carcinoma With Magnetic Resonance Imaging-Guided Stereotactic Body Radiation Therapy.

Pract Radiat Oncol. 2019;9:e55-e61. Prins FM; Stemkens B; Kerkmeijer LGW; Barendrecht MM; de Boer HJ; Vonken EPA; Lagendijk JJW; Tijssen RHN. doi: 10.1016/j.prro.2018.09.002.

Tumor Trailing for Liver SBRT on the MR-Linac.

Int J Radiat Oncol Biol Phys. 2019;103:468-478. Fast M; van de Schoot A; van de Lindt T; Carbaat C; van der Heide U; Sonke JJ. doi: 10.1016/j.ijrobp.2018.09.011.

Fiducial marker based intra-fraction motion assessment on cine-MR for MR-linac treatment of prostate cancer.

Phys Med Biol. 2019;64:07NT02. de Muinck Keizer DM; Pathmanathan AU; Andreychenko A; Kerkmeijer LGW; van der Voort van Zyp JRN; Tree AC; van den Berg CAT; de Boer JCJ. doi: 10.1088/1361-6560/ab09a6.

Technical note: MLC-tracking performance on the Elekta unity MRI-linac.

Phys Med Biol. 2019;64:15NT02. Glitzner M; Woodhead PL; Borman PTS; Lagendijk JJW; Raaymakers BW. doi: 10.1088/1361-6560/ab2667.

The development of a 4D treatment planning methodology to simulate the tracking of central lung tumors in an MRI-linac.

J Appl Clin Med Phys. 2018;19:145-155. Al-Ward SM; Kim A; McCann C; Ruschin M; Cheung P; Sahgal A; Keller BM. doi: 10.1002/acm2.12233.

Effect of intra-fraction motion on the accumulated dose for free-breathing MR-guided stereotactic body radiation therapy of renal-cell carcinoma.

Phys Med Biol. 2017;62:7407-7424. Stemkens B; Glitzner M; Kontaxis C; de Senneville BD; Prins FM; Crijns SPM; Kerkmeijer LGW; Lagendijk JJW; van den Berg CAT; Tijssen RHN. doi: 10.1088/1361-6560/aa83f7.

Real-time auto-adaptive margin generation for MLC-tracked radiotherapy.

Phys Med Biol. 2017;62:186-201. Glitzner M; Fast MF; de Senneville BD; Nill S; Oelfke U; Lagendijk JJ; Raaymakers BW; Crijns SP. doi: 10.1088/1361-6560/62/1/186.

Real-time 4D dose reconstruction for tracked dynamic MLC deliveries for lung SBRT.

Med Phys. 2016;43:6072. Kamerling CP; Fast MF; Ziegenhein P; Menten MJ; Nill S; Oelfke U. doi: 10.1118/1.4965045.

Proof of concept of MRI-guided tracked radiation delivery: tracking one-dimensional motion.

Phys Med Biol. 2012;57:7863-72. Crijns SP; Raaymakers BW; Lagendijk JJ. doi: 10.1088/0031-9155/57/23/7863.

Quality Assurance

Influence of different factors on registration error in a 1.5 T MR-guided linac.

Phys Med Biol. 2023;68:10NT02. Yin P; Yu G; Hou C; Liu X; Sun M; Li K; Cui Z; Liu P; Shi X; Zhang Q; Chen Y; Pi B; Yin Y; Li Z. doi: 10.1088/1361-6560/accef9.

Determining the quality control frequency of an MR-linac using risk matrix (RM) analysis.

J Appl Clin Med Phys. 2023;24:e13984. Ma M; Yan H; Li M; Tian Y; Zhang K; Men K; Dai J. doi: 10.1002/acm2.13984.

Dosimetric validation of the couch and coil model for high-field MR-linac treatment planning.

Z Med Phys. 2023;27:00010-7. Lynggaard Riis H; Lübeck Christiansen R; Tilly N; Tilly D. doi: 10.1016/j.zemedi.2023.02.002.

Development and clinical application of a GPU-based Monte Carlo dose verification module and software for 1.5 T MR-LINAC.

Med Phys. 2023;50:3172-3183. Cheng B; Xu Y; Li S; Ren Q; Pei X; Men K; Dai J; Xu XG. doi: 10.1002/mp.16337.

Risk analysis of the Unity 1.5 T MR-Linac adapt-to-position workflow.

J Appl Clin Med Phys. 2023;24:e13850. Liang J; Scripes PG; Tyagi N; Subashi E; Wunner T; Cote N; Chan CY; Ng A; Brennan V; Zakeri K; Wildberger C; Mechalakos J. doi: 10.1002/acm2.13850.

MR-linac daily semi-automated end-to-end quality control verification.

J Appl Clin Med Phys. 2023;24:e13916. Malkov VN; Winter JD; Mateescu D; Létourneau D. doi: 10.1002/acm2.13916.

Beam output checks of a commercial high-field magnetic resonance-guided radiotherapy machine with its on-board megavoltage imager.

Physics and Imaging in Radiation Oncology. 2023;25:100411. Hilgers Guido C.; Ikink Marijke; Potters Ilona; Schuring Danny. doi: 10.1016/j.phro.2023.100411.

Integration of an Independent Monitor Unit Check for High-Magnetic-Field MR-Guided Radiation Therapy System.

Front Oncol. 2022;12:747825. Yang J; Zhang P; Tyagi N; Scripes PG; Subashi E; Liang J; Lovelock D; Mechalakos J; Li A; Lim SB. doi: 10.3389/fonc.2022.747825.

An evaluation of the use of EBT-XD film for SRS/SBRT commissioning of a 1.5 Tesla MR-Linac system.

Phys Med. 2022;96:9-17. Boh Lim S; Tyagi N; Subashi E; Liang J; Chan M. doi: 10.1016/j.ejmp.2022.02.012.

Evaluation of MU2net as an online secondary dose check for MR guided radiation therapy with the Elekta unity MR linac.

Phys Eng Sci Med. 2022;45:429-441. Shoobridge AS; Baines JA. doi: 10.1007/s13246-021-01085-0.

Cross-engine transformation based fast dose calculation for MRI-Linac online treatment planning.

Med Phys. 2022;50:2429-2437. Song T; Zhou L; Li Y. doi: 10.1002/mp.16077.

Elekta Unity MR_linac commissioning: mechanical and dosimetry tests.

J Radiat Res. 2022;64:73-84. Tsuneda Masato; Abe Kota; Fujita Yukio; Ikeda Yohei; Furuyama Yoshinobu; Uno Takashi. doi: 10.1093/jrr/rrac072.

Variation in isocentre location of an Elekta Unity MR-linac through full gantry rotation.

Phys Med Biol. 2022;67:15005. Hunt JR; Ebert MA; Rowshanfarzad P; Riis HL. doi: 10.1088/1361-6560/ac4564.

Brain stereotactic radiosurgery using MR-guided online adaptive planning for daily setup variation: An end-to-end test.

J Appl Clin Med Phys. 2022;23:e13518. Han EY; Wang H; Briere TM; Yeboa DN; Boursianis T; Kalaitzakis G; Pappas E; Castillo P; Yang J. doi: 10.1002/acm2.13518.

Commissioning measurements on an Elekta Unity MR-Linac.

Phys Eng Sci Med. 2022;45:457-473. Powers M; Baines J; Crane R; Fisher C; Gibson S; Marsh L; Oar B; Shoobridge A; Simpson-Page E; Van der Walt M; de Vine G. doi: 10.1007/s13246-022-01113-7.

Magnetic Resonance-Guided Radiation Therapy of Patients With Cardiovascular Implantable Electronic Device on a 1.5 T Magnetic Resonance-Linac.

Pract Radiat Oncol. 2022;12:e56-e61. Yang B; Yuan J; Cheung KY; Huang CY; Poon DMC; Yu SK. doi: 10.1016/j.prro.2021.08.011.

Deep learning-based 3D in vivodose reconstruction with an electronic portal imaging device for magnetic resonance-linear accelerators: a proof of concept study.

Phys Med Biol. 2021;66:235011. Li Y; Xiao F; Liu B; Qi M; Lu X; Cai J; Zhou L; Song T. doi: 10.1088/1361-6560/ac3b66.

Longitudinal assessment of quality assurance measurements in a 1.5T MR-linac: Part I-Linear accelerator.

J Appl Clin Med Phys. 2021;22:190-201. Subashi E; Lim SB; Gonzalez X; Tyagi N. doi: 10.1002/acm2.13418.

Performance of a multileaf collimator system for a 1.5T MR-linac.

Med Phys. 2021;48:546-555. Zhang K; Tian Y; Li M; Men K; Dai J. doi: 10.1002/mp.14608.

Sources of out-of-field dose in MRgRT: an inter-comparison of measured and Monaco treatment planning system doses for the Elekta Unity MR-linac.

Phys Eng Sci Med. 2021;44:1049-1059. Baines J; Powers M; Newman G. doi: 10.1007/s13246-021-01039-6.

Acceptance procedure for the linear accelerator component of the 1.5 T MRI-linac.

J Appl Clin Med Phys. 2021;22:45-59. Woodings SJ; de Vries JHW; Kok JMG; Hackett SL; van Asselen B; Bluemink JJ; van Zijp HM; van Soest TL; Roberts DA; Lagendijk JJW; Raaymakers BW; Wolthaus JWH. doi: 10.1002/acm2.13068.

Extension and validation of a GPU-Monte Carlo dose engine gDPM for 1.5 T MR-LINAC online independent dose verification.

Med Phys. 2021;48:6174-6183. Li Y; Ding S; Wang B; Liu H; Huang X; Song T. doi: 10.1002/mp.15165.

Technical Note: End-to-end verification of an MR-Linac using a dynamic motion phantom.

Med Phys. 2021;48:5479-5489. Liu X; Li C; Zhu J; Gong G; Sun H; Li X; Sun M; Zhang Z; Li B; Yin Y; Li Z. doi: 10.1002/mp.15057.

Initial clinical experience of patient-specific QA of treatment delivery in online adaptive radiotherapy using a 1.5 T MR-Linac.

Biomed Phys Eng Express. 2021;7. Yang B; Wong YS; Lam WW; Geng H; Huang CY; Tang KK; Law WK; Ho CC; Nam PH; Cheung KY; Yu SK. doi: 10.1088/2057-1976/abfa80.

Analysis of patient-specific quality assurance for Elekta Unity adaptive plans using statistical process control methodology.

J Appl Clin Med Phys. 2021;22:99-107. Strand S; Boczkowski A; Smith B; Snyder JE; Hyer DE; Yaddanapudi S; Dunkerley DAP; St-Aubin J. doi: 10.1002/acm2.13219.

Machine QA for the Elekta Unity system: A Report from the Elekta MR-linac consortium.

Med Phys. 2021;48:e67-e85. Roberts DA; Sandin C; Vesanen PT; Lee H; Hanson IM; Nill S; Perik T; Lim SB; Vedam S; Yang J; Woodings SW; Wolthaus JWH; Keller B; Budgell G; Chen X; Li XA. doi: 10.1002/mp.14764.

An investigation of using log-file analysis for automated patient-specific quality assurance in MRgRT.

J Appl Clin Med Phys. 2021;22:183-188. Lim SB; Godoy Scripes P; Napolitano M; Subashi E; Tyagi N; Cervino Arriba L; Lovelock DM. doi: 10.1002/acm2.13361.

Automatic 3D Monte-Carlo-based secondary dose calculation for online verification of 1.5 T magnetic resonance imaging guided radiotherapy.

Phys Imaging Radiat Oncol. 2021;19:6-12. Nachbar M; Monnich D; Dohm O; Friedlein M; Zips D; Thorwarth D. doi: 10.1016/j.phro.2021.05.002.

Automatic reconstruction of the delivered dose of the day using MR-linac treatment log files and online MR imaging.

Radiother Oncol. 2020;145:88-94. Menten MJ; Mohajer JK; Nilawar R; Bertholet J; Dunlop A; Pathmanathan AU; Moreau M; Marshall S; Wetscherek A; Nill S; Tree AC; Oelfke U. doi: 10.1016/j.radonc.2019.12.010.

MRIgRT head and neck anthropomorphic QA phantom: Design, development, reproducibility, and feasibility study.

Med Phys. 2020;47:604-613. Steinmann A; Alvarez P; Lee H; Court L; Stafford R; Sawakuchi G; Wen Z; Fuller CD; Followill D. doi: 10.1002/mp.13951.

Quality assurance of IMRT treatment plans for a 1.5 T MR-linac using a 2D ionization chamber array and a static solid phantom.

Phys Med Biol. 2020;65:16NT01. Monnich D; Winter J; Nachbar M; Kunzel L; Boeke S; Gani C; Dohm O; Zips D; Thorwarth D. doi: 10.1088/1361-6560/aba5ec.

Commissioning of a 1.5T Elekta Unity MR-linac: A single institution experience.

J Appl Clin Med Phys. 2020;21:160-172. Snyder JE; St-Aubin J; Yaddanapudi S; Boczkowski A; Dunkerley DAP; Graves SA; Hyer DE. doi: 10.1002/acm2.12902.

A daily end-to-end quality assurance workflow for MR-guided online adaptive radiation therapy on MR-Linac.

J Appl Clin Med Phys. 2020;21:205-212. Chen X; Ahunbay E; Paulson ES; Chen G; Li XA. doi: 10.1002/acm2.12786.

Feasibility of using a commercial collapsed cone dose engine for 1.5T MR-LINAC online independent dose verification.

Phys Med. 2020;80:288-296. Li Y; Wang B; Ding S; Liu H; Liu B; Xia Y; Song T; Huang X. doi: 10.1016/j.ejmp.2020.11.014.

Development and validation of a 1.5 T MR-Linac full accelerator head and cryostat model for Monte Carlo dose simulations.

Med Phys. 2019;46:5304-5313. Friedel M; Nachbar M; Monnich D; Dohm O; Thorwarth D. doi: 10.1002/mp.13829.

Developing and characterizing MR/CT-visible materials used in QA phantoms for MRgRT systems.

Med Phys. 2018;45:773-782. Steinmann A; Stafford RJ; Sawakuchi G; Wen Z; Court L; Fuller CD; Followill D. doi: 10.1002/mp.12700.

Characterization of a prototype MR-compatible Delta4 QA system in a 1.5 tesla MR-linac.

Phys Med Biol. 2018;63:02NT02. de Vries JHW; Seravalli E; Houweling AC; Woodings SJ; van Rooij R; Wolthaus JWH; Lagendijk JJW; Raaymakers BW. doi: 10.1088/1361-6560/aa9d26.

Artificial intelligence and deep learning

A Technique to Enable Efficient Adaptive Radiation Therapy: Automated Contouring of Prostate and Adjacent Organs.

Adv Radiat Oncol. 2023:101336. Hyer Daniel; Caster Joseph; Smith Blake; St-Aubin Joel; Snyder Jeffrey; Shepard Andrew; Zhang Honghai; Mullan Sean; Geoghegan Theodore; George Benjamin; Byrne James; Smith Mark; Buatti John; Sonka Milan. doi: 10.1016/j.adro.2023.101336.

DAART: a deep learning platform for deeply accelerated adaptive radiation therapy for lung cancer.

Front Oncol. 2023;13:1201679. Hooshangnejad H; Chen Q; Feng X; Zhang R; Farjam R; Voong KR; Hales RK; Du Y; Jia X; Ding K. doi: 10.3389/fonc.2023.1201679.

Pretreatment information-aided automatic segmentation for online magnetic resonance imaging-guided prostate radiotherapy.

Med Phys. 2023. Yang B; Liu Y; Zhu J; Lu N; Dai J; Men K. doi: 10.1002/mp.16608.

Feasibility study of adaptive radiotherapy for esophageal cancer using artificial intelligence autosegmentation based on MR_Linac.

Front Oncol. 2023;13:1172135. Wang H; Liu X; Song Y; Yin P; Zou J; Shi X; Yin Y; Li Z. doi: 10.3389/fonc.2023.1172135.

Efficient segmentation using domain adaptation for MRI-guided and CBCT-guided online adaptive radiotherapy.

Radiother Oncol. 2023;188:109871. Liu Y; Yang B; Chen X; Zhu J; Ji G; Liu Y; Chen B; Lu N; Yi J; Wang S; Li Y; Dai J; Men K. doi: 10.1016/j.radonc.2023.109871.

Deep learning for automated contouring of neurovascular structures on magnetic resonance imaging for prostate cancer patients.

. 2023;26:100453. van den Berg I; Savenije M; Teunissen F; van de Pol S; Rasing M; van Melick H; Brink W; de Boer J; van den Berg C; van der Voort van Zyp J. doi: 10.1016/j.phro.2023.100453.

Automatic AI-based contouring of prostate MRI for online adaptive radiotherapy.

Z Med Phys. 2023;23:00053-3. Nachbar M; Lo Russo M; Gani C; Boeke S; Wegener D; Paulsen F; Zips D; Roque T; Paragios N; Thorwarth D. doi: 10.1016/j.zemedi.2023.05.001.

Multimodality MRI synchronous construction based deep learning framework for MRI_guided radiotherapy synthetic CT generation.

Phys Imaging Radiat Oncol. 2023;162:107054. ZhouXuanru; CaiWenwen; CaiJiajun; Xiao Fan; QiMengke; LiuJiawen; ZhouLinghong; LiYongbao; Song Ting. doi: 10.1016/j.compbiomed.2023.107054.

Deep learning-based prediction of deliverable adaptive plans for MR-guided adaptive radiotherapy: A feasibility study.

Front Oncol. 2023;13:939951. Buchanan L; Hamdan S; Zhang Y; Chen X; Li XA. doi: 10.3389/fonc.2023.939951.

Deep learning based automatic contour refinement for inaccurate auto-segmentation in MR-guided adaptive radiotherapy.

Phys Med Biol. 2023;68:55004. Ding J; Zhang Y; Amjad A; Sarosiek C; Dang NP; Zarenia M; Li XA. doi: 10.1088/1361-6560/acb88e.

Potential of Deep Learning in Quantitative Magnetic Resonance Imaging for Personalized Radiotherapy.

Semin Radiat Oncol. 2022;32:377-388. Gurney-Champion OJ; Landry G; Redalen KR; Thorwarth D. doi: 10.1016/j.semradonc.2022.06.007.

Domain adaptation of automated treatment planning from computed tomography to magnetic resonance.

Phys Med Biol. 2022;67:125010. Khalifa A; Winter J; Navarro I; McIntosh C; Purdie TG. doi: 10.1088/1361-6560/ac72ec.

Personalized auto-segmentation for magnetic resonance imaging-guided adaptive radiotherapy of prostate cancer.

Med Phys. 2022;49:4971-4979. Chen X; Ma X; Yan X; Luo F; Yang S; Wang Z; Wu R; Wang J; Lu N; Bi N; Yi J; Wang S; Li Y; Dai J; Men K. doi: 10.1002/mp.15793.

Real-time 3D MRI reconstruction from cine-MRI using unsupervised network in MRI-guided radiotherapy for liver cancer.

Med Phys. 2022;50:3584-3596. Wei R; Chen J; Liang B; Chen X; Men K; Dai J. doi: 10.1002/mp.16141.

Personalized Modeling to Improve Pseudo-Computed Tomography Images for Magnetic Resonance Imaging-Guided Adaptive Radiation Therapy.

Int J Radiat Oncol Biol Phys. 2022;113:885-892. Ma X; Chen X; Wang Y; Qin S; Yan X; Cao Y; Chen Y; Dai J; Men K. doi: 10.1016/j.ijrobp.2022.03.032.

Robust deep learning-based forward dose calculations for VMAT on the 1.5T MR-linac.

Phys Med Biol. 2022;67:225020. Tsekas G; Bol GH; Raaymakers BW. doi: 10.1088/1361-6560/ac97d8.

Automatic contour refinement for deep learning auto-segmentation of complex organs in MRI-guided adaptive radiotherapy.

Advances in Radiation Oncology. 2022;7:100968. Ding Jie; Zhang Ying; Amjad Asma; Xu Jiaofeng; Thill Daniel; Li X. Allen. doi: 10.1016/j.adro.2022.100968.

TransDose: a transformer-based UNet model for fast and accurate dose calculation for MR-LINACs.

Phys Med Biol. 2022;67:125013. Xiao F; Cai J; Zhou X; Zhou L; Song T; Li Y. doi: 10.1088/1361-6560/ac7376.

Patient specific deep learning based segmentation for magnetic resonance guided prostate radiotherapy.

Phys Imaging Radiat Oncol. 2022;23:38-42. Fransson S; Tilly D; Strand R. doi: 10.1016/j.phro.2022.06.001.

Patient-specific Daily Updated Deep Learning Auto-Segmentation for MRI-Guided Adaptive Radiotherapy.

Radiother Oncol. 2022;177:222-230. Li Z; Zhang W; Li B; Zhu J; Peng Y; Li C; Zhu J; Zhou Q; Yin Y. doi: 10.1016/j.radonc.2022.11.004.

Deep learning-based 3Din vivodose reconstruction with an electronic portal imaging device for magnetic resonance-linear accelerators: a proof of concept study.

Phys Med Biol. 2021;66:235011. Li Y; Xiao F; Liu B; Qi M; Lu X; Cai J; Zhou L; Song T. doi: 10.1088/1361-6560/ac3b66.

Real-time 3D motion estimation from undersampled MRI using multi-resolution neural networks.

Med Phys. 2021;48:6597-6613. Terpstra ML; Maspero M; Bruijnen T; Verhoeff JJC; Lagendijk JJW; van den Berg CAT. doi: 10.1002/mp.15217.

First experience of autonomous, un-supervised treatment planning integrated in adaptive MR-guided radiotherapy and delivered to a patient with prostate cancer.

Radiother Oncol. 2021;159:197-201. Kunzel LA; Nachbar M; Hagmuller M; Gani C; Boeke S; Zips D; Thorwarth D. doi: 10.1016/j.radonc.2021.03.032.

Synthetic CT for single-fraction neoadjuvant partial breast irradiation on an MRI-linac.

Phys Med Biol. 2021;66:85010. Groot Koerkamp ML; de Hond YJM; Maspero M; Kontaxis C; Mandija S; Vasmel JE; Charaghvandi RK; Philippens MEP; van Asselen B; van den Bongard HJGD; Hackett SS; Houweling AC. doi: 10.1088/1361-6560/abf1ba.

An evaluation of MR based deep learning auto-contouring for planning head and neck radiotherapy.

Radiother Oncol. 2021;158:112-117. Hague C; McPartlin A; Lee LW; Hughes C; Mullan D; Beasley W; Green A; Price G; Whitehurst P; Slevin N; van Herk M; West C; Chuter R. doi: 10.1016/j.radonc.2021.02.018.

Artificial Intelligence in magnetic Resonance guided Radiotherapy: Medical and physical considerations on state of art and future perspectives.

Phys Med. 2021;85:175-191. Cusumano D; Boldrini L; Dhont J; Fiorino C; Green O; Güngör G; Jornet N; Klüter S; Landry G; Mattiucci GC; Placidi L; Reynaert N; Ruggieri R; Tanadini-Lang S; Thorwarth D; Yadav P; Yang Y; Valentini V; Verellen D; Indovina L. doi: 10.1016/j.ejmp.2021.05.010.

DeepDose: a robust deep learning-based dose engine for abdominal tumours in a 1.5 T MRI radiotherapy system.

Phys Med Biol. 2021;66:065017. Tsekas G; Bol GH; Raaymakers BW; Kontaxis C. doi: 10.1088/1361-6560/abe3d1.

DeepDose: Towards a fast dose calculation engine for radiation therapy using deep learning.

Phys Med Biol. 2020;65:075013. Kontaxis C; Bol GH; Lagendijk JJW; Raaymakers BW. doi: 10.1088/1361-6560/ab7630.

Deep learning-based image reconstruction and motion estimation from undersampled radial k-space for real-time MRI-guided radiotherapy.

Phys Med Biol. 2020;65:155015. Terpstra ML; Maspero M; d'Agata F; Stemkens B; Intven MPW; Lagendijk JJW; van den Berg CAT; Tijssen RHN. doi: 10.1088/1361-6560/ab9358.

A Deep Learning-based correction to EPID dosimetry for attenuation and scatter in the Unity MR-Linac system.

Phys Med. 2020;71:124-131. Olaciregui-Ruiz I; Torres-Xirau I; Teuwen J; van der Heide UA; Mans A. doi: 10.1016/j.ejmp.2020.02.020.

Auto-segmentation of pancreatic tumor in multi-parametric MRI using deep convolutional neural networks.

Radiother Oncol. 2020;145:193-200. Liang Y; Schott D; Zhang Y; Wang Z; Nasief H; Paulson E; Hall W; Knechtges P; Erickson B; Li XA. doi: 10.1016/j.radonc.2020.01.021.

Fast contour propagation for MR-guided prostate radiotherapy using convolutional neural networks.

Med Phys. 2020;47:1238-1248. Eppenhof KAJ; Maspero M; Savenije MHF; de Boer JCJ; van der Voort van Zyp JRN; Raaymakers BW; Raaijmakers AJE; Veta M; van den Berg CAT; Pluim JPW. doi: 10.1002/mp.13994.

Multi-sequence MR image-based synthetic CT generation using a generative adversarial network for head and neck MRI-only radiotherapy.

Med Phys. 2020;47:1880-1894. Qi M; Li Y; Wu A; Jia Q; Li B; Sun W; Dai Z; Lu X; Zhou L; Deng X; Song T. doi: 10.1002/mp.14075.

A convolutional neural network for contouring metastatic lymph nodes on diffusion-weighted magnetic resonance images for assessment of radiotherapy response.

Phys Imaging Radiat Oncol. 2020;15:1-7. Gurney-Champion OJ; Kieselmann JP; Wong KH; Ng-Cheng-Hin B; Harrington K; Oelfke U. doi: 10.1016/j.phro.2020.06.002.

Dosimetric evaluation of synthetic CT for head and neck radiotherapy generated by a patch-based three-dimensional convolutional neural network.

Med Phys. 2019;46:4095-4104. Dinkla AM; Florkow MC; Maspero M; Savenije MHF; Zijlstra F; Doornaert PAH; van Stralen M; Philippens MEP; van den Berg CAT; Seevinck PR. doi: 10.1002/mp.13663.

MR-Only Brain Radiation Therapy: Dosimetric Evaluation of Synthetic CTs Generated by a Dilated Convolutional Neural Network.

Int J Radiat Oncol Biol Phys. 2018;102:801-812. Dinkla AM; Wolterink JM; Maspero M; Savenije MHF; Verhoeff JJC; Seravalli E; Isgum I; Seevinck PR; van den Berg CAT. doi: 10.1016/j.ijrobp.2018.05.058.

Dose evaluation of fast synthetic-CT generation using a generative adversarial network for general pelvis MR-only radiotherapy.

Phys Med Biol. 2018;63:185001. Maspero M; Savenije MHF; Dinkla AM; Seevinck PR; Intven MPW; Jurgenliemk-Schulz IM; Kerkmeijer LGW; van den Berg CAT. doi: 10.1088/1361-6560/aada6d.